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ABSTRACT
A numerical model of the Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect for ob-
jects defined in terms of a triangular mesh is described. The algorithm requires that each
surface triangle can be handled independently, which implies the use of a 1D thermal model.
Insolation of each triangle is determined by an optimized ray–triangle intersection search. Sur-
face temperature is modelled with a spectral approach; imposing a quasi-periodic solution we
replace heat conduction equation by the Helmholtz equation. Non-linear boundary conditions
are handled by an iterative, fast Fourier transform based solver. The results resolve the question
of the YORP effect in rotation rate independence on conductivity within the non-linear 1D
thermal model regardless of the accuracy issues and homogeneity assumptions. A seasonal
YORP effect in attitude is revealed for objects moving on elliptic orbits when a non-linear
thermal model is used.

Key words: radiation mechanisms: thermal – methods: numerical – celestial mechanics –
minor planets, asteroids: general.

1 IN T RO D U C T I O N

Referring to partial results of his predecessors (most notably
Paddack 1969), Rubincam (2000) forged the acronym ‘YORP ef-
fect’ (Yarkovsky–O’Keefe–Radzievskii–Paddack) to describe the
influence of radiation effects on the rotation of a Sun-orbiting ob-
ject. The radiation incident on the surface of a celestial body acts in
three different ways: by the direct pressure, by the recoil force of
reflected photons and by the thermal radiation force.

According to a simple geometric argument of Rubincam (2000),
further elaborated by Nesvorný & Vokrouhlický (2008b) and
Rubincam & Paddack (2010), the average torque due to direct ra-
diation pressure vanishes. Physical properties of asteroid surfaces
do not suggest a significant contribution of specular reflection, so
we may focus on the remaining two phenomena: scattered (i.e. dif-
fusively reflected) radiation and thermal re-radiation, defining the
YORP torque M as the sum

M = Md + M t, (1)

of the torque Md generated by the scattered radiation, and of the
grey body thermal radiation torque M t.

Within our present Lambertian model, the primary definitions
of the YORP torque components in reference frame attached to an
object’s centre of mass are given as integrals over the body surface:

Md = − 2

3c

∮
S

AE r × dS, (2)
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where AE is the scattered fraction of incident power flux – the
product of albedo A and of the flux E hitting the infinitesimal surface
element dS, and

M t = −2σ

3c

∮
S

εt T
4 r × dS, (3)

where the re-radiated energy flux is the product of the Stefan–
Boltzmann constant σ , grey body emissivity factor εt and the fourth
power of surface temperature T . Both terms are divided by the
velocity of light c.

Conservation of energy on the body surface implies that

εt σ T 4 + K n · ∇T − (1 − A) E = 0, (4)

so the absorbed flux (1 − A) E is distributed between the re-
radiation, proportional to T4, and conduction term given as the
product of thermal conductivity K and the normal derivative of
temperature – the gradient projected on the outward normal unit
vector n.

Substituting the boundary condition (4) into equation (3) we can
merge a part of M t with Md, so that the YORP torque becomes the
sum

M = MR + Mc, (5)

of the principal term

MR = − 2

3c

∮
S

Er × dS, (6)

and the complement due to conductivity

Mc = 2

3c

∮
S

K (n · ∇T ) r × dS. (7)
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The subscript R refers to the usual ‘Rubincam approximation’
of zero conductivity, and the problem of finding MR is actually
an exercise in computational geometry. Its most difficult part is the
evaluation of E, discussed in Section 3. Computing the conductivity
term Mc requires solving the heat diffusion equation. Our simplified
1D thermal model is presented in Section 4. Two of its possible
extensions are given in Appendices B and C, but the latter serves
mostly as a theoretical argument and has not been implemented.
The results of test runs with asteroids 1998 KY26 and 6489 Golevka
are presented in Section 5. In our opinion, they reveal a previously
unnoticed seasonal YORP effect in attitude. Additional assumptions
of our model are enumerated in Section 2, but we hope to relax them
in future.

2 PRELIM INA R IES

2.1 Body shape model

Although there are many possible ways to describe the shape of
a celestial body, the YORP studies practically rely on two vari-
ants: a spherical harmonics model (typical for analytical consider-
ations) or a triangular mesh. We adopt the latter as more general,
capable of representing even very irregular objects, and more suit-
able for the occlusion tests. As a consequence, an integral over
the body surface becomes the sum of cubatures over all triangular
patches forming the mesh. Of course, the real information about
the surface points is given only at the vertices r i, so the values
of distance or any other coordinates dependent function have to
be interpolated on a patch. In principle, it can be done using var-
ious interpolation rules, even the ones that involve the whole set
of vertices, but in the YORP practice all authors rely on the local,
linear interpolation, considering flat triangles and replacing all cu-
batures over triangular patches by the first order Gaussian mid-point
rule∫

Sj

f (r) dSj ≈ f (rj ) Sj , (8)

where Sj is the area of a triangle determined by vertices r j
0, r j

1, r j
2,

and r j is the centroid

rj = 1

3

(
rj

0 + rj
1 + rj

2

)
. (9)

In particular, the oriented surface vectors Sj = nj Sj are constant on
each triangular face, easily computed as

Sj = 1

2

(
rj

1 − rj
0

)
×
(

rj
2 − rj

0

)
. (10)

Of course, the mesh should be properly oriented, so that Sj com-
puted from equation (10) is always directed along the outward
normal. The routine tests rely on checking the Gauss identity

Nm∑
j=1

Sj = 0, (11)

followed by asking if the volume resulting from the sum of oriented
tetrahedral simplices

V = 1

6

Nm∑
j=1

rj
0 ·

(
rj

1 × rj
2

)
, (12)

is positive, when all Nm faces are included. Yet, even if both
tests have been passed, there remain a number of possible de-

generacies, like edges shared by more than two triangles, dupli-
cated vertices etc., that are best to be checked before using the
mesh.

Thus, for a model of a celestial body with Nm triangular faces,
the YORP torque is approximated as a sum

M =
Nm∑
j=1

Mj , (13)

with

Mj = − 2

3c
(Ej + Qj ) rj × Sj , (14)

where two terms in the bracket are Ej – the incident power flux
evaluated at the centroid r j and

Qj = −Knj · [∇T ]rj
. (15)

These two terms are responsible for the Rubincam part and the
conductivity complement, respectively.

2.2 Dynamics

Although recent works of Vokrouhlický et al. (2007) and Cicalò &
Scheeres (2010) have revealed the importance of tumbling rotation
for the dynamics under the YORP torque, we adhere to the usual
assumption of the rotation around the principal axis of inertia –
the ez unit vector of the body-frame basis. The principal axis mode
remains a decent approximation over significant fragments of the
evolutionary paths presented by Vokrouhlický et al. (2007), and
in some instances it may be possible to incorporate tumbling by
rotating the basis with respect to the principal axes. So, we consider
the principal axis mode equations of motion for the rotation rate ω,
the obliquity ε (the angle between the normal to the orbital plane and
the spin vector ω, parallel to ez) and the sidereal time � (measured
from the ascending node of the Sun on the object’s equator to the
body-frame basis ex vector)

ω̇ = M · e3

C
, (16)

ε̇ = M · e1

ωC
, (17)

�̇ = ω − M · e2

ωC tan ε
, (18)

where C designates the maximum moment of inertia in the principal
axes frame.

According to the above equations, the dynamics is governed by
the components of the YORP torque M in another kind of equatorial
reference frame (e1, e2, e3) (see Fig. 1) with the same (centre of
mass) origin as the body frame (ex, ey, ez), with the same z direction,
but with the remaining axes related to the equinox instead of to the
principal axes (Breiter, Vokrouhlický & Nesvorný 2010)

e1 = sin �ex + cos �ey,

e2 = − cos �ex + sin �ey,

e3 = ez. (19)

2.3 Average YORP effect

From the point of view of long term, systematic influence of the
YORP effect, we are mostly interested in the mean values of ω̇, ε̇
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Figure 1. Reference frames and angles in a body-centred system.

and �̇, with all daily and orbital periodic effects averaged out.
Thus, assuming a uniform rotation with constant frequency ω and
the Keplerian motion around the Sun, we need to find the mean
values, defined for any function f

〈f 〉 = 1

4π2

∫ 2π

0

∫ 2π

0
f d� d�, (20)

where � is the mean anomaly of the Sun. We perform this averaging
indirectly, working with discrete Fourier transforms (DFT) of f (�,
�). Using the conventions described in Appendix A, we assume

〈f 〉 = f̂ [0], (21)

where f̂ = F2 f is the DFT of the function f , and f is the vector of
samples of this function at different � and � values.

According to equation (14), the mean value of M · e3 on a single
triangle j is simply

〈
Mj · e3

〉 = − 2

3c
(Êj [0] + Q̂j [0]) (rj × Sj ) · ez, (22)

where Sj is computed in the body frame, so the scalar product with
e3 = ez amounts to selecting the third component. But the aver-
aging of the next two terms is slightly more involved: confronting
equation (19) with (A9) we find

〈
Mj · e1

〉 = − 2

3c

[
�(Êj [1] + Q̂j [1]) (rj × Sj ) · ey

−�(Êj [1] + Q̂j [1]) (rj × Sj ) · ex

]
, (23)

〈
Mj · e2

〉 = 2

3c

[
�(Êj [1] + Q̂j [1]) (rj × Sj ) · ex

+�(Êj [1] + Q̂j [1]) (rj × Sj ) · ey

]
. (24)

The above expressions make use of the Hermitian property of the
DFT for a real-valued function, and assume that in the sampling
described in Appendix A the first angle is φ = �, and the second is
ψ = �.

3 RU B I N C A M T E R M S

3.1 Insolation function

The major difficulty in dealing with the Rubincam part of the YORP
effect is the computation of E, known as the insolation or irradia-

tion function. In principle, the incident energy flux hitting a given
surface element is a sum of two components: the direct flux from
the Sun and the radiation exchange complement, i.e. the energy
coming from other elements of the body surface (either reflected
or re-emitted). In the present paper, we adhere to the approxi-
mation used in all previous works and consider only the direct
part

E = � ξ (r, n̂, n̂	) n̂ · n̂	, (25)

where � designates the solar radiation power flux at a given dis-
tance of the body from the Sun ro. Using the solar constant �0 ≈
1366 W m−2, we have

� = �0

(
d0

ro

)2

, (26)

with the reference distance d0 = 1 au.
Defining and computing the visibility function ξ is the heart of

the problem. Its values are either ξ = 0, when the Sun is not visible
over the current surface element, or 1 otherwise. For convex bodies,
ξ depends only on the scalar product of the outward normal unit
vector n̂ and the unit vector directed to the Sun n̂	. In other words,
whenever the zenith distance of the Sun is less than 90◦, the visibility
function ξ = 1, because the formal horizon (a local tangent plane
perpendicular to n̂) and the actual horizon (the part of a celestial
hemisphere not occluded by other surface elements) coincide for
a convex object. In this case, computing ξ is so cheap and easy,
that often the bodies of an arbitrary shape are formally treated as
convex when computing E, which is necessary in analytical theories
(Nesvorný & Vokrouhlický 2007, 2008a; Mysen 2008; Breiter &
Michalska 2008; Breiter et al. 2010), and handy in numerical or
some semi-analytical models (Vokrouhlický et al. 2007; Scheeres &
Gaskell 2008; Cicalò & Scheeres 2010). However, the weakness of
such pseudo-convex treatment for irregular, bouldered and cratered
objects, testified by Scheeres, Mirrahimi & Gaskell (2008) and – in
a quite different form – by Breiter et al. (2009), suggests to avoid it
whenever possible, unless the shape model is known in advance to
be convex (e.g. when it comes from the convex light-curve inversion
algorithm).

Leaving aside the visibility function algorithms, to be discussed
in next subsections, we begin computations with tabulating the flux
� and the components of n̂	 in the orbital frame for the mean
anomaly � sampled at N equidistant points in the full angle range
0 ≤ � < 2π. In the orbital frame, the direction cosines are formally

[n̂	]orb =

⎛
⎜⎝

cos (ωo + fo)

sin (ωo + fo)

0

⎞
⎟⎠ , (27)

where ωo is the argument of perihelion and f o is the true anomaly
of the Sun. Thus the two non-zero components and � are tabulated
once, before the main loop over surface triangles begins, so the cost
of solving Kepler equation is relatively negligible. Other quantities
pre-computed before the main algorithm starts are centroid posi-
tions r j, areas Sj and unit normal vectors n̂j associated with each
triangular face.

Given a pair of mean anomaly and rotation phase (�, �), we
transform the solar vector to the body frame by means of two
rotations: around the first axis by angle (−ε), and then around the
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third axis by angle �, so that

n̂	 =

⎛
⎜⎝

cos � cos ε sin � ∗
− sin � cos ε cos � ∗

0 sin ε ∗

⎞
⎟⎠ [n̂	]orb, (28)

where ‘*’ are placeholders for irrelevant matrix entries.

3.2 Visibility function

The fundamental operation in the evaluation of the visibility func-
tion is the ‘stabbing query’, i.e. testing the intersection of a ray

w = rj + ηn̂	, η > 0, (29)

with other surface triangles. This standard tool of computational
geometry is well documented (Möller & Trumbore 1997), so we
skip the details focusing on a less trivial question: how to minimize
the number of its calls.

Obviously, there is no need to perform the query when the Sun
is below the formal horizon, i.e. when n̂j · n̂	 ≤ 0. So, the most
straightforward selection tool is to create for each j a list of all
triangles with at least one vertex above the formal horizon and,
if n̂j · n̂	 > 0, perform the queries only with triangles from the
list. But expecting that the list should be short is wishful thinking,
based upon a false intuition of a flat landscape with distant moun-
tains on the horizon and plenty of clear sky above a spectator’s
head.

Quite a number of difficult to spot errors may arise if an optimized
visibility algorithm is created with such a picture in mind. If there
are craters or boulders on an asteroid, one should rather try to
imagine the landscape seen by an ant climbing a pit or walking on
a side of a boulder surrounded by other rough terrain features. The
region of a clear sky can be a small, irregular, non-convex area, and
its intersection with the daily Sun path can be a union of disjoint
segments.1 For a triangle on a boulder or a crater side, up to 90 per
cent of remaining triangles may stretch above the formal horizon,
and it means that the number of queries should be additionally
optimized.

An optimization method, very briefly reported in the paper of
Statler (2009), relies on a horizon map – a 1D array of maximum
elevation of surface features above the formal horizon on a grid
of local azimuth values for a given triangle. However, it is not
clear from the author’s description how far his approach is based
upon the ‘hills on a horizon’ paradigm and whether he avoided the
problems arising when some triangles overhang the local zenith,
because then the altitude of clear sky has both the lower and the
upper bound (smaller than 90◦).

Another, more robust way to handle the optimization, applied in
papers like Vokrouhlický & Čapek (2002), Čapek & Vokrouhlický
(2004) and Ďurech et al. (2008), and described in Čapek (2008,
Appendix B2), amounts to creating a huge collection of 2D visibility
tables for a specific object. For each surface triangle, a longitude–
latitude Mercator map with 0/1 values on a 1◦ × 1◦ grid is first
computed and stored in a file. During the YORP computation, the
longitude and latitude of the Sun are rounded to full degrees and
compared with the related entry of the visibility table. Creating the
tables is time consuming, but performed only once for a given object.

1However prudent the approach described by Scheeres (2007) may seem,
that approach may involve further subtleties responsible for the differences
between Scheeres et al. (2008) and Breiter et al. (2009) concerning the
influence of shadowing on the YORP effect for 25 143 Itokawa.

The drawbacks are fixed discretization error with uneven resolution
on a sphere, and huge file space requirements. The largest shape
model attacked with this approach was the triangulated Itokawa
shape with 196 608 facets (Ďurech et al. 2008).

Our approach is an attempt to join the robustness of Čapek (2008)
with the potential efficiency of Scheeres (2007) or Statler (2009).
The method has already proved its valour in computing the Rubin-
cam part of the YORP effect for Itokawa and Eros using their models
of over 3 × 106 triangular faces (Breiter et al. 2009). Computing the
YORP torques for a number of obliquity values εi, we use the fol-
lowing arrangement of loops: triangles(obliquity(orbit(rotation)).
The efficiency of our approach hinges upon the possibility of con-
sidering surface elements one by one in the outermost loop, which
is possible within the assumptions of the illumination and ther-
mal model of the present work, although suppressing the present
restrictions in future, we will most likely find ourselves in a less
comfortable situation.

For a current surface triangle j we first create a ‘horizon array’,
partitioning the local hemisphere into a fixed number of sectors
(along meridians) and zones (along constant altitude circles). A
typical setup uses about 100 sectors and 64 zones. Each triangle
above the formal horizon is centrally projected on to the unit sphere
with the origin at r j in order to find its ‘bounding box’ in azimuth and
altitude. The problem has its own subtleties: the extreme azimuth
values are those of the vertices, but care must be taken about the
cases of crossing the zero meridian; on the other hand, the extremes
of altitude are often different from the altitude of vertices due to
the bending of a straight edge in central projection. And, last but
not least, if some triangles are intersected by the local zenith line
(parallel to the normal vector n̂j ), it should be marked as a ‘zenith
triangle’ and requires a special treatment, having a constant altitude
circle as the bounding box.

In addition to the bounding box determination, each triangle k
is also labelled as foreground or background object, depending on
the sign of the scalar product of its outward normal vector n̂k and
the relative position of its centre rk − r j. Obviously, if any ray
w intersects a foreground triangle, it must intersect a background
triangle as well, hence – for economy of time and storage – we
select a less populated of the foreground and background subsets of
faces above the formal horizon as the candidates for future stabbing
queries.

Once the first loop over triangles k 
= j is completed, the horizon
array is dynamically created with an appropriate size. Then, in the
second loop over k 
= j, the number k is stored in the lists referring
to all zone-sector cells covered by the bounding box of the kth
triangle.

Thus we create the horizon array – a set of lists containing pos-
sible occluders for a given solar altitude and azimuth. Actually, the
array covers the entire hemisphere only in the presence of a zenith
triangle. If no such face is detected, we record the bounding altitude
of the clear sky cap and set the horizon array cells subdividing only
the sector between the formal horizon and the clear sky limit circle.
After that, the remaining computations are straightforward: fixing
the value of obliquity (or opening the obliquity loop) we sample
the rotation phase and mean anomaly, and for each pair of these
angles compute the Sun vector n̂	. If the Sun is above the formal
horizon, we select an appropriate entry of the horizon array and per-
form stabbing queries with triangles from the list, until we record
the intersection (ξ = 0) or the end of the list is reached (ξ = 1).
Having collected all values of the insolation function Ej ∈ R

N2
,

we perform the DFT and find the requested amplitudes Êj [0] and
Êj [1]. Of course, a simple arithmetic mean can be used instead of
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the DFT (as we did in Breiter et al. 2009), but the complete spectrum
is required to compute the conductivity terms, as described in the
next section.

4 C O N D U C T I V I T Y T E R M S

4.1 Plane-parallel model

The surface temperature gradient, required by the conductivity com-
plement, is obtained by solving the heat diffusion equation

∇ · K ∇T = ρ cp
∂T

∂t
, (30)

where ρ is the density and cp is the specific heat capacity of the
object. If we assume that conductivity K is independent on temper-
ature and has the same value in the entire volume of the body, we
reduce equation (30) to the form

κ�T = ∂T

∂t
, (31)

where the thermal diffusivity κ , defined as

κ = K

ρcp
, (32)

will be assumed constant, leading to the homogeneous body thermal
model.

The plane-parallel model (PPM) results from two simplifying
assumptions: (i) the penetration depth of the heat wave is small
compared with the radius of curvature for all fragments of the body
surface, and (ii) there is no heat exchange in the direction perpen-
dicular to the surface normal. Both the assumptions are plausible
for large objects with a low conductivity and a smooth, preferably
convex surface. In PPM, we introduce the depth variable ζ whose
values increase from ζ = 0 on the surface to higher positive values
inside the body. The basic equation of the homogenous body PPM
is a reduced form of (31)

κ
∂2T

∂ζ 2
= ∂T

∂t
, (33)

with non-linear Robin boundary conditions

εtσT 4(0) − KT ′(0) − (1 − A) E = 0, (34)

on the surface, and Neumann boundary condition in the limit of
infinite depth

lim
ζ→∞

T ′(ζ ) = 0. (35)

In both cases, we use

T ′ = ∂T

∂ζ
, (36)

and equation (34) results from the energy balance (4) with

n̂ · ∇T = −T ′. (37)

Accordingly, equation (15) can be replaced by

Qj = K T ′
j . (38)

Instead of initial conditions at some specified epoch t, we impose
the quasi-periodicity condition, requiring that all transient terms
have been damped after sufficient relaxation time. This condition
is most easily imposed by assuming from the beginning that T is
replaced by its DFT with respect to rotation phase � and mean
anomaly �.

Since the assumptions of PPM exclude the heat transfer between
adjacent triangles (and their associated volumes), we may consider
each body fragment separately, so the index referring to a partic-
ular face (like j in equation 38) will be omitted in the following
discussion.

4.2 Helmholtz equation and its solution

4.2.1 General case

Let us consider the DFT of temperature

T̂ = N−2 F2T . (39)

Resorting to the associated trigonometric polynomial (A9) substi-
tuted into Fourier equation (33), we find that the DFT coefficients,
as functions of depth ζ , obey a system of decoupled 1D Helmholtz
equations

(T̂ [p])′′ − i βp T̂ [p] = 0, p = 0, . . . , N 2 − 1, (40)

where N is the angles sampling density, and parameters βp depend
on orbital mean motion ν and rotation rate ω; if p = j + kN, then

βp = ZN (j ) ν + ZN (k) ω

κ
, (41)

where ZN is defined in Appendix A.
Using a formal analogy with harmonic oscillator (with a complex

frequency), and imposing the Neumann condition (35), we obtain a
solution, depending on one arbitrary constant Cp, in a form

T̂ [p] = Cp exp

[
−(1 + sgn(βp) i)

√
|βp|

2
ζ

]
. (42)

In principle, Cp should now be determined from the second bound-
ary condition, but for the further treatment we need only the loga-
rithmic derivative

γp = T̂ ′[p]

T̂ [p]
= −(1 + i sgn(βp))

√
|βp|

2
, (43)

which occurs to be independent on ζ and allows to express the
derivative T ′ in terms of T .

4.2.2 Null frequency

The general solution (42) is not valid for βp = 0, when equation (40)
degenerates into

(T̂ [p])′′ = 0. (44)

It happens when p = 0, i.e. for the mean value of temperature T .
The solution of (44) is a linear function of ζ , but matching it with

the boundary condition (35) we find that the null frequency solution
is T̂ [0] = const, hence

γ0 = 0. (45)

The fact that γ 0 = 0, has significant implications for the YORP
influence on ω.

4.3 Boundary conditions

4.3.1 Newton–Raphson setup

Knowing the ratios γ p, we can find the spectrum Q̂ from the bound-
ary conditions (34). Consider the vector of sampled temperature val-
ues T at the centroid of a given triangular face. We will designate
by T n the vector of the nth powers of T , i.e.

T n[p] = (T [p])n , p = 0, . . . , N 2 − 1. (46)
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Then, using the DFT formalism from Appendix A, the boundary
conditions (34) can be written in the vector form

εtσ T 4 − Q = (1 − A) E. (47)

Using equations (A8), (A6), (38) and (43), we find that

T 4 + N−2(F∗
2BF2)T = 1 − A

εtσ
E, (48)

where B is an N2 × N2 diagonal matrix with

Bpp = −Kγp

εtσ
. (49)

The main difficulty in dealing with the energy balance equa-
tion (48) is its non-linearity, requiring the use of some approximate
methods. Resorting to the Newton–Raphson method, we can estab-
lish an iterative scheme

(D(m) + C)T (m+1) = G(m), (50)

where D is a diagonal matrix with

D(m)
pp = 4 (T 3[p])(m), (51)

C is a normal, block circulant matrix

C = N−2 F∗
2BF2, (52)

with all eigenvalues λp = Bpp having non-negative real parts, and

G(m) = 1 − A

εt σ
E + 3

4
D(m)T (m). (53)

In principle, starting from any reasonable approximation T (0), we
can solve the linear system (50), approaching a sufficiently accurate
T with a quadratic convergence. Then the spectrum Q̂, required in
(22, 24), follows from

Q̂ = −εtσN−2BF2T = −εt σ BT̂ , (54)

efficiently executed by one call of the fast Fourier transform (FFT)
routine.

Regretfully, the left-hand side of equation (50) contains a dense,
N2 × N2 matrix that cannot be directly inverted by low cost al-
gorithms. This is quite frustrating, because the inversion of the
diagonal matrix D is trivial, while inverting F∗

2BF2 alone is easily
done by the FFT. But before we show the way to solve this prob-
lem, an important property of the non-linear system (48) is worth
stating.

4.3.2 Conductivity has no influence on the rotation period
in the PPM

According to Section 4.2.2 and equation (49), the element B00 =
0. As a consequence, the first row of the matrix F∗

2B contains only
zeros, hence

Q̂[0] = 0. (55)

Thus, returning to equation (22) we conclude that, as far as the PPM
of a homogeneous body is concerned, the conductivity complement
has no effect on the mean value of the YORP torque component
responsible for ω̇, i.e.〈

Mj · e3

〉 = − 2

3c
Êj [0] (rj × Sj ) · ez, (56)

is determined by the Rubincam part alone.
A similar observation was reported in previous works, although

each time with different assumptions. Mysen (2008), Nesvorný &
Vokrouhlický (2008a) and Breiter & Michalska (2008) found it

assuming the infinite radius of a homogeneous object, but they
made additional assumptions of linearized temperature variations
and pseudo-convex shadowing model. Numerical results of Čapek
& Vokrouhlický (2004), using the assumptions similar to these of the
present paper, were non-conclusive: some objects seemed to have
ω̇ independent on conductivity, but some (like 6489 Golevka) were
exceptions from this rule.2 The arguments based on the spectrum
of derivative ζ ′, support our earlier conjecture (Breiter et al. 2009)
that the apparent dependence on K is definitely due to numerical
errors – most probably a too short relaxation time and/or inaccurate
discretization in the time stepping finite difference scheme of Čapek
& Vokrouhlický (2004).

The first significant dependence of ω̇ on K was announced in the
analytical model of Breiter et al. (2010) which allowed for a finite
body radius and used a 3D heat diffusion equation in spherical
coordinates, although – as usual in analytical models – with many
additional simplifications. Thus, a central question is which of the
two factors generates the dependence on conductivity. Appendix C
presents the extension of the PPM to the 1D model with finite
radius; even in this generalization γ 0 = 0, hence we can state that
the necessary condition for the dependence of the YORP effect in
spin rate on conductivity is the heat exchange perpendicular to the
surface normal, i.e. a 3D heat diffusion model.

4.3.3 HN iterations

In order to solve equation (50), we took the approach based upon the
idea of Ho & Ng (2005), who considered circulant-plus-diagonal
systems with imaginary diagonal part (iD+C). Unfortunately, major
part of the proofs given by Ho and Ng relies on the skew-Hermitian
property of iD, so we adopted their method to our (D + C) system
faute de mieux, hoping that HN iterations3 will work anyway.

According to the HN algorithm, at each Newton step (50) of the
‘outer iterations’, one should introduce ‘inner iterations’

(τ I + C) Y (k) = (τ I − D(m)) T (m,k) + G(m), (57)

(τ I + D(m)) T (m+1,k) = (τ I − C) Y (k) + G(m), (58)

where τ > 0 is some arbitrary real parameter, and Y ∈ R
N2

is an
auxiliary vector.

Concatenating equations (57) and (58), one can see that the con-
vergence of this process depends on the spectral radius ρ(M) of the
matrix

M = (τ I + D)−1 (τ I − C) (τ I + C)−1 (τ I − D) , (59)

[superscripts (m) omitted] which is bounded by

ρ(M) ≤ max
p

|τ − Dpp|
|τ + Dpp| max

p

|τ − Bpp|
|τ + Bpp| . (60)

Knowing that either Bpp = 0, or �(Bpp) = |�(Bpp)| > 0, we conclude

max
p

|τ − Bpp|
|τ + Bpp| = 1, (61)

hence

ρ(M) ≤ max
p

|τ − Dpp|
|τ + Dpp| . (62)

2 Čapek & Vokrouhlický (2004) write about ‘a near independence’ on K.
3 An acronym equally matching the authors’ names and the Hermitian-plus-
normal nature of the system.
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Thus the spectral radius is less than 1, provided the diagonal of D
does not contain zero or negative values of 4T3. It means that HN
iterations will converge faster at higher conductivity values, when
the minimum temperature does not drop significantly during the
night. On the other hand, equation (62) suggests a safe and nearly
optimal choice of τ as the geometric mean of the maximum and
minimum diagonal entries of D

τ =
√

Dmax Dmin. (63)

This rule obviously fails for Dmin = 0. But, what is worse, the shad-
owing effects lead to discontinuities in the insolation, causing the
so-called ringing artefacts – often with negative values of temper-
ature. From the point of view of upper bounds (62), the iterations
should diverge in such cases, but the algorithm occurs to be un-
expectedly robust and often converges in spite of T < 0, although
once the temperature drops below 0, a number of wild and chaotic
jumps can be observed before the residues resume their decreasing
path. After a number of trials we have finally adopted a practical
rule of thumb

τ = max (
√

Dmax |Dmin|,
√

Dmax), (64)

handling the negative Dmin case, and protecting τ from taking ex-
cessively small values.

4.3.4 Quasi-Newton method

When using combined inner–outer iterations schemes, one always
faces a problem when to terminate the inner loop before the improve-
ments become non-significant from the point of view of the current
outer iteration. At this point we trade efficiency for simplicity and
retain only one inner HN step, obtaining the final quasi-Newton
scheme with two substeps

(τ (m) I + C) Y = (τ (m) I − D(m)) T (m) + G(m), (65)

(τ (m) I + D(m)) T (m+1) = (τ (m) I − C) Y + G(m), (66)

where τ (m),D(m) and G(m) are recomputed at each step m [but not
between the substeps (65) and (66)].

In practical terms, solving the equations of the quasi-Newton
method is quite simple and requires the storage of only few 1D
arrays with N2 elements. The matrix–vector product in the right-
hand side of equation (65) is obviously executed in a single N2 loop,
generating some vector X ∈ R

N2
according to

X[p] = (
τ (m) − D(m)

pp

)
T (m)[p] + G(m)[p], (67)

where p = 0, . . . , N2 − 1. We compute this vector and find its DFT
X̂ according to the definition (A6). In order to solve the system(
τ (m) I + C

)
Y = X , we note that

(τ (m) I + C)Y = [
F∗

2(N−2 τ (m) I)F2 + C
]

Y , (68)

so, substituting equations (52, 67 and 68) into (65), we obtain

F∗
2(τ (m) I + B) Ŷ = X, (69)

where Ŷ = N−2F2Y is the DFT of Y. Thus, the first substep is
completed by defining, but not yet evaluating, the transform Ŷ

Ŷ [p] = X̂[p]

τ (m) + Bpp

. (70)

Solving equation (66) we use a similar approach: first, the product
in the right-hand side is expressed as

(τ (m) I − C) Y = F∗
2(τ (m) I − B) Ŷ . (71)

It means, that we have to compute the inverse DFT W = F∗
2Ŵ ,

where

Ŵ [p] = τ (m) − Bpp

τ (m) + Bpp

X̂[p], (72)

and then we obtain the mth approximation of surface temperature

T (m)[p] = W [p] + G(m)[p]

τ (m) + D
(m)
pp

. (73)

Each step of this process requires two calls of the FFT procedures,
one direct (X → X̂) and one inverse (Ŵ → W ), as well as few
loops with N2 complex products, which is probably not far from the
optimum computational cost.

4.4 First guess and accuracy

The fundamental question accompanying each iteration process is
how to start and when to stop. It looks reasonable to assume the
starting value T (0) by setting K = 0 in the original, non-linear
boundary conditions (48), which leads the choice between

T (0) =
(

1 − A

εtσ

)1/4

E1/4, (74)

or, apparently simplistic,

T (0)[p] =
(

(1 − A)
Ê[0]

εtσ

)1/4

= T0, p = 0, . . . , N 2 − 1.

(75)

Choosing a constant T (0) according to (75) may seem too crude,
since it means that iterations will have to reconstruct all periodic
terms with leading amplitudes – in the worst case of low conductiv-
ity – comparable in magnitude to the mean value. But the practice
shows a superiority of (75) over (74). Building the amplitudes up
from zero is numerically more stable than decreasing their values
from the state, when the temperature determined by (74) takes zero
values. This fact can be explained from a number of points of view,
using both physical and mathematical arguments. Focusing on the
latter, note that according to the estimates given in Section 4.3.3, the
spectral radius ρ(M) equals 1 when any of T (0)[p] = 0. Moreover,
the approximation (74) is a continuous, but not smooth function of
� and �, which significantly degrades the numerical quality of the
DFT of its derivative with respect to these angles.

Let us write explicitly the values of T̂
(1)

resulting from the quasi-
Newton iterations when T (0) is given by equation (75). In this case,

T̂
(0)

[p] = 0 for all p 
= 0, the mean value is T̂
(0)

[0] = T0 and
diagonal matrix D(0) = 4T 3

0 I, hence τ (0) = 4T3
0. Using

G(0) = 1 − A

εt σ
E + 3 T 3

0 T (0), (76)

we obtain from (65) and (66), left multiplied by F2,

T̂
(1)

[0] = N−2 T0, (77)

T̂
(1)

[p] = (1 − A)

εtσ

Ê[p]

4T 3
0 + Bpp

, p = 1, . . . , N 2 − 1. (78)

Remarkably, the same result can be obtained even easier from the
original Newton–Raphson system (50). Equations (77) and (78)
define the linear thermal model – a standard tool in analytical YORP
theories. Of course, the direct application of equations (77) and
(78), followed by one FFT call to obtain T (1) is much cheaper than
performing the first iteration of (65) and (66) in its regular form.
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Table 1. Parameters of test objects.

1998 KY26 6489 Golevka

Albedo A 0.1 0.1
Emissivity εt 0.9 0.9
Density ρ kg m−3 2800 2700
Specific heat cp J kg−1 K−1 680 680
Mom. inertia C kg m2 1.9346 × 109 7.3420 × 1015

Rotation period P h 0.1748 6.0264
Orbit semi-axis a au 1.232 2.5
Eccentricity e 0.2 0.6
Approx. diameter m ∼ 30 ∼ 530

For this reason we actually start iterations from m = 1, obtaining
the means to simulate the results of linear model as an extra profit.

The iterations cycle has to be stopped when a sufficient accu-
racy is attained. The stopping criterion should be chosen carefully.
The simplest one is to observe the differences between subsequent

values of T̂
(m)

[1] and exit when |T̂ (m)
[1] − T̂

(m−1)
[1]| < δ. But

one has to be careful, because when the convergence is slow (a
typical situation at low conductivities), such a difference carries no

information about the accuracy of T̂
(m)

[1]. Fortunately, we have
also an objective criterion εtσ 〈T 4〉 = (1 − A) Ê[0], independent
on the convergence rate. And since the mean value of T 4 accumu-
lates also the errors of all periodic terms of T, we exit the iterations
when, for a specified temperature tolerance δ, two conditions are
simultaneously satisfied:

|T̂ (m)
[1] − T̂

(m−1)
[1]| ≤ T −3

0

∣∣∣∣〈(T (m))4〉 − (1 − A)

εtσ
Ê[0]

∣∣∣∣ < δ.

(79)

5 TEST RU N S

5.1 Test bodies and accuracy requirements

Two asteroids were chosen as test bodies for our numerical simula-
tions: 1998 KY26 with a relatively regular shape and 6489 Golevka,
whose large-scale concavities and sharp corners make it a good
benchmark for the YORP models. Physical parameters adopted for
the simulation are given in Table 1. Radar shape models of both
objects4 (4092 triangular faces) were reduced to the centre of mass
and principal axes system assuming a constant density.

In most of previous YORP models, either the orbits were simply
assumed circular or the YORP effect computed on a circular orbit
was multiplied by a conversion factor

qe = (
1 − e2

)−1/2
. (80)

From theoretical standpoint, the latter procedure can be justified
exact in the Rubincam’s approximation or in linear thermal models,
where rotation and orbital motion effects are separable, but there are
no reasons to assert it in general. The factor qe concerns all terms
proportional to the average power flux (i.e. the ones with 〈T4〉) but
not those depending on the first power of temperature (Rubincam
2004).

In all computations, we have adopted a rule that no error bars
should be required in YORP plots. Various levels of sampling N

4 Downloaded from the site http://www.psi.edu/pds/asteroid/ file version
EAR A 5 DDR RADARSHAPE MODELS V2 0.zip.

Figure 2. YORP effect in rotation rate for 1998 KY26 (top) and 6489
Golevka (bottom). Joined dots mark the values computed with 2◦ spac-
ing in obliquity. Dashed line represents the pseudo-convex approximation.
Note the difference in units between the top and bottom panels.

and tolerance δ had been tried until a difference from the results
with sampling 2N and tolerance δ/10 became comparable to the plot
line thickness. Finally, for 1998 KY26 we used N = 256, δ = 10−4,
whereas Golevka, as expected, was more challenging and required
N = 512, δ = 10−4, or even 10−6, depending on conductivity. For
the pseudo-convex shadowing model, the requirements were less
severe and N could be two times smaller. Formal accuracy of the
results presented in next sections is the following: 1998 KY26 – 3 ×
10−5 rad s−1 Myr−1 for the rotation rate, and 3 × 10−4 rad s−1 Myr−1

for the attitude YORP; 6489 Golevka – 0.03 rad d−1 Myr−1 for ω̇,
and 0.5 rad d−1 Myr−1 for the attitude effect.

5.2 YORP effect in rotation rate

As we demonstrated in Section 4.3.2 and Appendices B and C,
all kinds of 1D thermal models lead to the same YORP effect in
rotation rate, equivalent with the Rubincam approximation K = 0.
Fig. 2 shows the values of doubly averaged 〈M3〉 C−1, where M3 =
M · e3. According to equation (16), these values are equal to angular
acceleration ω̇. The dots in Fig. 2 are placed for actually computed
values of ω̇, and they form curves that fairly well agree with the
results of Vokrouhlický & Čapek (2002), provided the factor qe is
used and the differences in C and ao are accounted for.

The pseudo-convex approximation looks decent for a regular
object like 1998 KY26, but it fails completely for irregularly shaped
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Golevka. It is worth noting that the influence of shadowing for
1998 KY26 amounts in principle to a vertical translation of the curve;
a similar (although more prominent) phenomenon was observed for
25143 Itokawa (Breiter et al. 2009).

5.3 YORP in attitude: seasonal effect revealed

The YORP effect in attitude is usually described in terms of 〈M ·
e1〉 = 〈M1〉 and 〈M · e2〉 = 〈M2〉. According to Section 2.2, the
mean value of the drift in obliquity is given by ω ε̇ = 〈M1〉C−1,
whereas 〈M2〉C−1 = tan ε(�̇ − ω) is responsible for the mean
precession component of the effect. Figs 3 and 4 demonstrate the
influence of conductivity on these two attitude components within
the non-linear 1D thermal model. Except for the Rubincam case,
where a good agreement of 〈M1〉 with Vokrouhlický & Čapek (2002)
is observed, the results may look surprising, not to say ridiculous,
at the first glance. Is not it absurd to have ε̇ > 0 for ε = 180◦?
Why are the present curves so different from all previously reported
plots?

The first question is relatively easy to resolve, since it is related
to the classical problem of polar coordinates singularity close to
the origin, where a wrong parametrization may contradict physi-
cal facts. Non-zero mean values of 〈M1〉 and 〈M2〉 at sin ε = 0
merely indicate that the orientation of the spin axis normal to the
orbital plane is not an equilibrium. A proper treatment of pass-
ing through this state requires a formulation in terms of the spin
vector and torque Cartesian coordinates (e.g. Breiter, Nesvorný &
Vokrouhlický 2005).

As for the second question, we have to note that the previous the-
ories of YORP with non-zero conductivity were mostly linear, ap-
proximating T4 by T4

0 + 4 T3
0 T1, with a constant T0 and a purely pe-

riodic T1. The only exception from this rule is the numerical model
of Čapek & Vokrouhlický (2004), but there the authors present only
the results for circular orbits. They did compute the values for e 
= 0
as well, but only for single, specific ε and ωo pairs of actual objects
and no plots covering the whole range of obliquities have been pub-
lished as yet. Fig. 5 shows that linear approximation generated by
our model (top) and non-linear results with e = 0 (bottom) behave
exactly like in previous publications (except for a more complicated
shape resulting from a better sampling than the nine points inter-
polation of Čapek & Vokrouhlický 2004). Even a weak asymmetry
of the obliquity YORP curve with respect to ε = 90◦ agrees with
(Čapek & Vokrouhlický 2004). These results imply that the shape of
curves in Figs 3 and 4 is due to non-linear coupling between daily
and seasonal waves, and the effect must be due to the variation
of heliocentric distance, because the temperature variations due to
change of seasons are present also in circular motion where nothing
unusual happens.

More light can be shed on the problem when changing the ar-
gument of perihelion ωo, which was set to 0 in all previous plots.
Fig. 6 presents the attitude YORP effect for Golevka (e = 0.6,
K = 10−3 W m−1 K−1) with four different arguments of perihelion
ωo values (0◦, 90◦, 180◦ and 270◦). Fig. 7 compares the arithmetic
mean of the four values with the results obtained for the circular
orbit and re-scaled to e = 0.6. On the other hand, Fig. 8 shows
the dependence of the attitude YORP effect on the argument of

Figure 3. YORP effect in obliquity (left) and precession (right) for 1998 KY26 with e = 0.2 and ωo = 0. Joined dots mark the actually computed values in
Rubincam’s approximation (K = 0). Dashed, dot–dashed and dotted curves refer to the values from non-linear 1D model at K = 0.001, 0.1 and 10 W m1 K−1,
respectively.

Figure 4. Same as Fig. 3 for 6489 Golevka with e = 0.6 and ωo = 0.
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Figure 5. YORP effect in obliquity (left) and precession (right) for 6489 Golevka. Top: linear approximation with e = 0.6 and ωo = 0; bottom: circular orbit
results rescaled by (1 − e2)−1/2 = 1.25. Conductivity like in previous figures.

Figure 6. YORP effect in obliquity (left) and precession (right) for 6489 Golevka on an eccentric orbit (e = 0.6) with ωo = 0 (solid), 90◦ (dotted), 180◦
(dot–dashed) and 270◦ (dashed). Conductivity K = 10−3 W m−1 K−1.

Figure 7. Arithmetic mean of the four curves from Fig. 6 (solid line) and the results for a circular orbit multiplied by 1.25 (dots).
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Figure 8. YORP effect in obliquity (left) and precession (right) for 6489 Golevka on an eccentric orbit (e = 0.6) with ε = 30◦ and conductivity K =
10−3 W m−1 K−1 as a function of argument of perihelion ωo.

perihelion (sampled by 4◦) when we fix the obliquity of Golevka
at ε = 30◦. The dependence is almost (but not exactly) sinusoidal
and the amplitude depends on eccentricity, although the dependence
does not seem to obey a simple power law.

5.4 The two layers model

Introducing a more advanced model with a monolithic core and a
regolith layer, described in Appendix B, has no influence on the
YORP effect in rotation rate. Thus, the results shown in Figs 9
and 10 concern only the effect in attitude. In the test runs we have
considered the values of density for both objects given in Table 1
as the bulk densities serving to compute the moments of inertia,
but they are no longer used to compute the thermal diffusivity.
Instead, we have adopted the following regolith parameters: K =
0.01 W m−1 K−1, cP = 760 J kg−1 K−1 and ρ = 1660 kg m−3 (Rumpf
et al. 2008). Accordingly, the thermal diffusivity of regolith layer is
κ ≈ 7.93 × 10−9 m2 s−1 and the physical properties of the core are
specified by the ratio w defined by equation (B3). We have assumed
the value of w = 0.1 as a presumably realistic estimate.

Fixing a randomly chosen obliquity ε = 45◦, we used our model
to compute the YORP effect in attitude for various regolith depths
h. As it might be expected, there is a gradual transition between
the thin and thick regolith cover results, and the curves in Figs 9
and 10 are practically flat when prolonged towards higher or lower
h values. However, the transition is not monotonic, resembling a
superposition of a logistic curve with damped oscillations. This
effect is understandable, observing that h factors both the real and
the imaginary parts of the exponential in equations (B8) and (B9). A

similar pattern was present in the Yarkovsky force model of Čapek
(2008, fig. A8) – the only analogue that we can refer to.

The characteristic order of magnitude for the depth h determining
the transition from the thick to thin regolith case is the skin depth: a
function of thermal diffusivity and insolation frequency (Lagerros
1996). However, there are two different principal skin depths in our
model: rotational lr, involving ω and orbital lo, involving the mean
motion ν,

lr =
√

κ

ω
, lo =

√
κ

ν
. (81)

Vertical lines in Figs 9 and 10 mark these two parameters (dashed
for lr and dotted for lo), indicating that rotational skin depth (much
smaller than lo) is the only important quantity. However, a significant
deviation from the thin regolith mode occurs already at the values
of h below 0.1 lr or even 0.01 lr. With lr ≈ 1 mm for 1998 KY26 and
lr ≈ 5 mm for Golevka, we can observe that the strongest depen-
dence of the attitude YORP effect on h is observed when the regolith
thickness is in the range of 0.1–10 mm, which is quite similar to the
results of Vokrouhlický & Brož (1999) concerning the Yarkovsky
effect.

6 C O N C L U S I O N S

Thanks to the application of Fourier transform, the algorithm
presented in this paper is more efficient and more accurate (al-
though less general) than its equivalent described by Čapek &
Vokrouhlický (2004) and Čapek (2008). Abandoning the finite dif-
ference approach in favour of using exact solutions of the Helmholtz

Figure 9. YORP effect in obliquity (left) and precession (right) for 1998 KY26 at ε = 45◦ as a function of regolith depth h. Rotational and orbital thermal
penetration depths are indicated by vertical lines (dashed and dotted, respectively).
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Figure 10. Same as Fig. 9 for 6489 Golevka.

equation helped us to demonstrate that the YORP effect in rotation
period is the same in the Rubincam’s approximation (K = 0) and
in various 1D thermal models. As long as one neglects the heat
transfer between adjacent surface elements, the values of ω̇ do not
depend on conductivity, regardless of the body size and radial ho-
mogeneity assumptions. From the point of view of observational
detection of YORP, always based upon ω̇, this is a nice conclusion;
not only because the Rubincam’s model is easier to compute, but
also it requires less physical parameters to be known, since then –
at least for the Lambertian scattering and emission – emissivity and
albedo values do not matter. As a matter of fact, the conclusion
can be also given a straightforward physical explanation. If the heat
conduction is restricted to the direction normal to the surface, a
non-zero mean value of the temperature normal gradient Q should
imply systematic heating or cooling of asteroid’s interior. Hence,
the property that 〈Q〉 = 0 follows directly from the request of the
energetic equilibrium state with transient terms relaxed. However,
according to the analytical model of Breiter et al. (2010), the YORP
torque in rotation period for smaller bodies with a 3D thermal model
may differ from the Rubincam’s approximation because of the heat
flow between adjacent surface pathes that may receive a different
mean power flux.

Even if the YORP effect occurred to be insensitive to the trans-
verse heat conduction, the 1D models considered in this paper
should not be applied to objects whose diameter is small when
compared with a skin depth. This restriction, explicitly stipulated in
Section 4.1, can be physically explained as follows. Consider a bar
passing through the centre of a body O and intersecting the surface
in two antipodal areas S1 and S2. The 1D models consider it as two
disjoint slabs with the absence of heat conduction at O imposed as
a boundary condition. In these circumstances, even if the conduc-
tivity is very high, there is no possibility to transfer the heat from
the sunlit S1 to the dark S2 in order to reach a smoother surface
temperature distribution and reduce the YORP strength. A possible
improvement of 1D models might be based upon considering the
set of antipodal bars without the central cut; yet, in our opinion, a
future investment in a complete 3D model is more needed.

The YORP effect in attitude is not directly observable, but still
important for the simulations of long-term spin axis dynamics.
The most prominent example is the analysis of the Slivan states in
Koronis family (Vokrouhlický, Nesvorný & Bottke 2003), consid-
ered the first, indirect proof of the YORP effect existence and sig-
nificance. Our results indicate that for elliptic orbits there exists a
phenomenon that may be called a seasonal YORP effect in attitude
by analogy with the seasonal Yarkovsky effect in orbital motion

(Rubincam 1995; Vokrouhlický & Farinella 1999). The seasonal
effect did not appear in earlier works based upon linearized thermal
models, which led to a hasty rule that the influence of orbital eccen-
tricity amounts merely to a multiplicative factor from equation (80).
We confirm the validity of this rule for the rotation period YORP,
but not for the attitude. The effect passed unnoticed in the model
of Čapek & Vokrouhlický (2004), which can probably be explained
by its high computational time demands that discouraged exper-
iments with various argument of perihelion values. The seasonal
YORP in attitude deserves a closer inspection within a non-linear
analytical model (even with a crude insolation model) that might
help to explain its physical meaning. It is quite possible that there
exist some relation between the seasonal YORP and the Seversmith
psychroterms mechanism discovered by Rubincam (2004)

As a final remark, let us observe that the presented model can be
easily adapted to compute the Yarkovsky effect in orbital motion,
like in the paper of Mysen (2008).
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Čapek D., 2008, PhD thesis, Charles Univ., Prague
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Möller T., Trumbore B., 1997, J. Graphics Tools, 2, 21
Mysen E., 2008, A&A, 484, 563
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APPEN D IX A : D ISCRETE FOURIER
T R A N S F O R M

Our implementation of the algorithms presented in this paper re-
lies on the extensive use of the FFTW library (v. 3.2.2) developed
by Frigo & Johnson (2005). The following formulae will use sign
conventions, normalization factors and 1D storage of 2D matri-
ces (including the numbering of elements from 0) adhering to the
FFTW.

The size N Fourier matrix F is defined in terms of powers of

ωj = e−i j 2π/N , j = 0, . . . , N − 1, (A1)

as

F =

⎛
⎜⎜⎝

ω0
0 . . . ωN−1

0

...
. . .

...

ω0
N−1 . . . ωN−1

N−1

⎞
⎟⎟⎠ . (A2)

For the 2D DFT of the size N × N, we define the matrix F2 using
the Kronecker tensor product

F2 = F ⊗ F, (A3)

with a resulting block structure of the N2 × N2 matrix

F2 =

⎛
⎜⎜⎝

ω0
0F . . . ωN−1

0 F

...
. . .

...

ω0
N−1F . . . ωN−1

N−1F

⎞
⎟⎟⎠ . (A4)

Let us consider a function of two angles u(φ, ψ). Sampling u on
a square grid of φj = j 2π/N, and ψ k = k 2π/N, where j, k = 0, . . .

, N − 1, we create a vector u ∈ R
N2

, whose pth element is

u[p] = u(φj , ψk), p = j N + k. (A5)

The direct DFT of u is the vector û ∈ R
N2

resulting from the
matrix–vector product

û = 1

N 2
F2u. (A6)

The inverse DFT is provided by the complex conjugate F∗
2 with the

property

F∗
2F2 = F2F

∗
2 = N 2 I, (A7)

so that

F∗
2 û = 1

N 2
F∗Fu = u, (A8)

explaining the necessity of the N−2 factor in equation (A6).
We can consider DFT as the coefficients of a trigonometric poly-

nomial

u ≈
N ′∑

j=−N ′

N ′∑
k=−N ′

ujkei(jφ+kψ), N ′ = �N/2�, (A9)

where � � is the ‘floor’ rounding down operator. Introducing

ZN (q) =
{

q for q ≤ � 1
2 N�,

q − N for q > � 1
2 N�, (A10)

we can identify

û[q1N + q2] = ujk, (A11)

j = ZN (q1), (A12)

k = ZN (q2), (A13)

with the indices q1, q2 = 0, . . . , N − 1. Strictly speaking, for even
N the Nyquist terms with |j| = N/2 or |k| = N/2 require a special
treatment and an extra factor 1/2 or 1/4, but their influence on the
final solution is practically so marginal that we do not pay attention
to this problem.

APPENDI X B: PPM WI TH REGOLI TH LAY ER

The thermal model presented in Section 4 can be easily extended to
cover a case when an asteroid is treated as monolithic core covered
by a regolith layer of thickness h. Let us assume conductivity K and
thermal diffusivity κ for the regolith layer 0 ≤ ζ < h and Kc, κc for
the core ζ ≥ h. Then, equation (40) is replaced by two sets

(T̂ [p])′′ − i βp T̂ [p] = 0, (B1)

(T̂ c[p])′′ − i w2 βp T̂ c[p] = 0, (B2)

where p = 0, . . . , N2 − 1, and w2 is the ratio of thermal diffusivities

w =
√

κ

κc
, (B3)

introduced to use a single parameter βp defined for the surface layer
according to equation (41).5

Solutions T̂ c[p] are subject to the Neumann condition at infinity,
hence, similarly to (42) they read

T̂ c[p] = Cp exp

[
−[1 + sgn(βp) i]

√
w |βp|

2
ζ

]
, (B4)

except for the special case T̂ c[0] = C0. For the regolith layer,
however, the asymptotic condition does not apply, so it takes a
more general form T̂ [p]

T̂ [p] = Ap exp

[
−[1 + sgn(βp) i]

√
|βp|

2
ζ

]

+Bp exp

[
[1 + sgn(βp) i]

√
|βp|

2
ζ

]
, (B5)

5 Our w is the same as ξ1 of Vokrouhlický & Brož (1999).
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with the boundary condition (48). As usual, the special case T̂ [0] =
A0 applies.

Both solutions should satisfy continuity requirements at ζ = h,
i.e. additional Dirichlet conditions

(T̂ c[p] − T̂ [p])ζ=h = 0, (B6)

and Neumann conditions

(T̂
′
c[p] − T̂

′
[p])ζ=h = 0. (B7)

Thanks to them, we can express Bp in terms of Ap alone, and so
we obtain the logarithmic derivative that generalizes (43) for the
surface temperature for p 
= 0

γp = T̂ ′[p]

T̂ [p]
= −[1 + sgn(βp) i]

w − 1 + (w + 1)Hp

1 − w + (w + 1)Hp

√
|βp|

2
,

(B8)

where

Hp = e[1+sgn(βp ) i] h
√

2 |βp |, (B9)

and the special case with p = 0 is γ 0 = 0.
The formula (B8) uses no assumptions about the depth h, but if

we postulate a thin regolith layer, the terms linear in h are simply

γp ≈ −[1 + sgn(βp) i] w

√
|βp|

2
+ i βp (w2 − 1) h. (B10)

Recalling that w2 βp is the ratio of insolation frequency to the
thermal diffusivity of the core, we see that γ p is dominated by the
properties of the inner part of asteroid, although entering the matrix
B it will be multiplied by the surface conductivity of the regolith
layer K.

Going even further and neglecting h in the approximation (B10),
we obtain the simplest recipe for the regolith covered objects: use
the physical parameters of the core to compute γ p, and the regolith
parameters in the rest of the algorithm. Of course, it would be wise
to verify the quality of this approximation by comparing at least the
values of γ 1 computed according to (B10) with h = 0, with the ones
obtained using a more exact formula.

Concluding this section we emphasize that even when the phys-
ical properties of an object vary with the depth ζ , our conclusion
about the independence of 〈ω̇〉 on conductivity remains true.

APPEN D IX C : SPHERICAL SEGMENTS
AS A 1 D M ODEL WITH FINITE DEPTH

Suppose that an object is starlike, i.e. each surface element can be
connected with the centre of mass using a straight segment that does
not intersect other surface elements. In these circumstances, we can
consider the Laplacian operator in spherical coordinates, and the
reduction to 1D amounts to neglecting non-radial part of �, so that
Fourier equation (31) becomes

κ

r2

∂

∂r

(
r2 ∂T

∂r

)
= ∂T

∂t
, (C1)

where 0 ≤ r ≤ R. An elementary substitution

u = r

R
T , (C2)

reduces equation (C1) to the form similar to (33)

κ
∂2u

∂r2
= ∂u

∂t
, (C3)

so the associated Helmholz equation is the same as (40)

d2û[p]

dr2
− i βp û[p] = 0, p = 0, . . . , N 2 − 1. (C4)

Note that at the surface, where r = R, we have u = T , allowing us to
use the algorithm of Section 4 directly, without even changing the
symbols. But first we have to redefine the coefficients γ p to account
for new boundary conditions.

Instead of asymptotic Neumann conditions at ζ → ∞, typical
for the plane-parallel case, we now have the Dirichlet condition
up(r = 0) = 0, satisfied automatically when T at the origin is finite.
On the surface, where u = T , the energy balance (4) holds true, but
now the gradient of T , reduced to the radial derivative, is not the
same as the derivative of u, because[

dT

dr

]
r=R

= du

dr
− u

R
. (C5)

Thus, instead of (38) we use

Q = Kδ

(
u

R
− du

dr

)
, (C6)

where δ is the cosine of the angle between the radius vector and the
outward normal vector of the current surface element. As we see,
there are two major differences in the conduction treatment between
the PPM and the spherical segment approach: the dependence on
the local radius R, and the deviation of the gradient from the normal
direction.

Similar to the PPM model, we solve equation (C4) as a har-
monic oscillator with imaginary frequency, but this time a different
boundary condition gives us at the surface r = R

1

û[p]

dû[p]

dr
= √

i βp coth
(
R
√

i βp

)
, (C7)

and the ratios γ p in matrix B should be replaced by

γp = δ

(
1

R
− 1

û[p]

dû[p]

dr

)
, (C8)

when p 
= 0. However, when p = 0, we still have

γ0 = 0, (C9)

so the YORP effect in rotation rate ω remains insensitive to con-
ductivity, similarly to the PPM case.

Taking the outward normal parallel to the radius, i.e. fixing δ = 1,
and taking the limit at infinite R, when hp → 1, tp → 0, we recover
the PPM with γ 0 = 0, and remaining γ p given by equation (43).
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