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ABSTRACT
The classical Matese–Whitman theory of Oort Cloud comet perturbations has been revisited
and extended. An explicit solution for the motion of the mean ascending node is given; it
involves an elliptic integral of the third kind. Equations of the mean orbit are formulated in
terms of the Cartesian components of the Laplace and angular momentum vectors (vectorial
elements). The equations are solved in terms of elliptic functions and the solution is free of
the ambiguity related to the orientation of the perihelion that was present in previous work.
The Cartesian equations of motion for the vectorial elements form a Hamiltonian system of
the Lie–Poisson type. This allows them to be integrated numerically by means of Hamiltonian
splitting methods. The formulae of such an integrator are derived with a Hamiltonian function
split into two parts.

Key words: methods: analytical – methods: numerical – celestial mechanics – comets:
general – Oort Cloud.

1 I N T RO D U C T I O N

The Oort Cloud (Oort 1950) is commonly considered to be the main
source of the comets observed in the Solar system. The gravita-
tional effect of the Galaxy plays a fundamental role in the evolution
of the Oort Cloud comets because – unlike stellar or molecular
cloud encounters – it is the only significant force that acts systemat-
ically. Since the first work of Chebotarev (1966) and Byl (1983), the
Galactic force has been treated in the tidal approximation. Heisler &
Tremaine (1986) influenced further studies by indicating the dom-
inant role of the Galactic disc and using an averaged Hamiltonian
function of this problem. Matese and Whitman observed that the av-
eraged Hamiltonian of the Galactic disc tides leads to equations of
motion directly solvable in terms of elliptic functions and integrals
(Matese & Whitman 1989, 1992). Most of the present works exten-
sively exploit their solution, but at the same time we can observe
that more attention is being paid to the action of the Galactic Centre
(Brasser 2001; Fouchard 2004). The latter effect, albeit small, has a
particular importance: it destroys the axial symmetry of the problem.
Without the axial symmetry, the Galactic potential averaged with re-
spect to the mean anomaly still has two degrees of freedom and is
apparently non-integrable. This explains why the averaged system
with the Galactic Centre tide included has always been numerically
integrated.

The present paper is the first step towards an analytical treatment
of the complete tidal potential of the Galaxy. In principle, it is en-
tirely dedicated to the Galactic disc effects: we aim at improving
and extending the classical solution of Matese & Whitman (1989).
First, we fill in two gaps in the Matese–Whitman theory: we present

�E-mail: breiter@amu.edu.pl (SB); astromek@amu.edu.pl (RR)

an explicit formula for the evolution of the orbital ascending node;
and we resolve the north–south ambiguity in the location of the
perihelion. Both deficiencies were to some extent tolerable in the
Galactic disc framework, but they have blocked the way towards a
general Galactic tide model. The second improvement is significant
even for the Galactic disc effects alone: recalling the significance of
the Laplace vector discussed in Breiter, Dybczyński & Elipe (1996),
we formulate the averaged Galactic disc perturbations problem in
terms of the Laplace vector and angular momentum vector compo-
nents. The resulting equations are elegant, simple and non-singular.
They can be numerically integrated using a Lie–Poisson splitting
method.

2 K E P L E R I A N E L E M E N T S S O L U T I O N

2.1 Preliminaries

Let us introduce a heliocentric reference frame with the Oxy plane
parallel to the Galactic disc. In this reference frame a comet in the
Oort Cloud attracted by the Sun and by the Galactic disc obeys
equations of motion

r̈ = − µ

r 3
r − ∂Vd

∂r
, (1)

where µ = GM� is the heliocentric gravity parameter and the
Galactic disc potential is

Vd = 2πGρz2, (2)

where ρ is the local density of the Galaxy and G stands for the grav-
itational constant. For the convenience of further considerations, we
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introduce a dimensionless parameter ε defined as

ε = 2

√
πGρ

n0
, (3)

where n0 =
√

µa−3 is the Keplerian orbital mean motion of a
comet. Averaging the perturbing potential V d with respect to the
mean anomaly we obtain

〈Vd〉 = K1 = 1
4 ε2n2

0a2s2(1 − e2 + 5e2 sin2 ω). (4)

The symbols that appear in equation (4), namely the semimajor axis
a, sine of inclination s = sin I (analogously, we will also use c =
cos I ), eccentricity e, argument of perihelionω, and the mean motion
n0, have the meaning of mean orbital elements; they differ from the
osculating elements by the absence of short-period perturbations.
Both a and n0 are constant as the effect of removing the mean
anomaly from K1.

Resorting to the Hamiltonian formulation one immediately ob-
tains the prime integral√

(1 − e2) c = α = constant, (5)

which is a consequence of the invariance of K1 with respect to ro-
tations around the Oz axis. Thus, in order to determine the shape
and orientation of a mean elliptic orbit, only three Keplerian ele-
ments are required: ω, � and either I or e, provided the constants a
and α have been specified. In further discussion the knowledge of a
will always be implicitly understood. A second integral of motion
is obviously K1 = constant; combining it with equation (5) and re-
jecting all terms known to be constant, we obtain the reduced energy
integral

e2(1 − 5s2 sin2 ω) = β = constant, (6)

introduced by Breiter et al. (1996). The sign of β plays an essen-
tial role, helping to distinguish solutions with librating (β < 0) or
circulating (β > 0) argument of perihelion. Note also that β is the
minimum value attained by the square of eccentricity in the circu-
lating ω regime – a fact that can be immediately checked by setting
ω = 0 or ω = π in equation (6). If we specify both α and β, then
ω and � uniquely define a mean orbit. In order to simplify the final
results, we introduce four auxiliary parameters:

γ = 1
4 (4 − 5α2 − β), (7)

κ =
√

γ 2 + β, (8)

ξ1 = 1
2 (γ + κ), (9)

ξ2 = 1
2 (γ − κ). (10)

The parameters are closely related to the quantities that appeared in
Matese & Whitman (1992):

Hz L−1 = α,

H 2
0 L−2 = 1 − β,

H 2
1 L−2 = 1 − ξ1,

H 2
2 L−2 = 1 − ξ2.

(11)

Similar symbols were used in Breiter et al. (1996), but some of them
have a different meaning in the present paper. Using the subscript
96 for the quantities from Breiter et al. (1996), we have

α2 = α96, β = β96, κ2 = 1
16 κ96, (12)

as well as ε96 = εn0. We recall that ξ 1 is the maximum eccentricity
squared value that can be reached for given α and β.

For convenience, we introduce a dimensionless time variable τ ,
such that τ = 0 when the evolving eccentricity attains one of its
maxima, and

dτ

dt
= ε2n0. (13)

Derivatives with respect to τ will be marked by a ‘prime’, e.g. t ′ =
ε−2 n−1

0 , and derivatives with respect to time by a ‘dot’, i.e. τ̇ = ε2n0.

2.2 Eccentricity

The classical solution of Matese & Whitman (1989, 1992) provides
an explicit formula for η = √

1 − e2, and hence for the eccentricity
e, allowing one to determine inclination from equation (5) and 2ω

from the energy integral. After minor transformations the solution
of Matese & Whitman can be cast into the form1

e2 = ξ1 − A2 sn2(Bτ | m), (14)

where the elliptic modulus is

m ≡ k2 = A2

B2
, (15)

with

A =
√

ξ1 − max(β, ξ2), (16)

B =
√

ξ1 − min(β, ξ2). (17)

Actually, the solution type is determined by the sign of β, because
β > 0 implies β >ξ 2, while β < 0 means β <ξ 2 (compare equations
8 and 10). When β = 0 we obtain the homoclinic motion with

e2 = 1 − 5
4 α2

cosh2
[√

(1 − 5
4 α2) τ

] , (18)

which asymptotically tends to e2 = 0. The inequality (1−5/4α2) �
0 results from the definition of γ = ξ 1 + ξ 2, combined with β = 0
and non-negative values of ξ 1 and ξ 2 (see Matese & Whitman 1989,
1992).

2.3 Ascending node longitude

The ascending node longitude � is a variable seldom mentioned
in the discussion of the Galactic disc perturbations. Owing to the
axial symmetry of the problem, the Lagrange equation (Brouwer &
Clemence 1961)

�′ = − c

ε2n2
0a2s

√
1 − e2

∂K1

∂s

= − c(1 − e2 + 5e2 sin2 ω)

2
√

1 − e2
(19)

can be detached from the remaining system and solved by quadra-
tures. Substituting prime integrals (5) and (6), we can simplify equa-
tion (19), obtaining a form that depends only on constants and e2:

�′ = − α(1 − α2 − β)

2(1 − α2 − e2)
. (20)

1 In this paper we use elliptic functions sn, cn and dn.
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Maintaining the assumption that τ = 0 at the instant when e2 attains
one of its maxima, and assuming that the ascending node of a mean
orbit at that epoch has longitude �0, we solve equation (20) by
quadratures as

� = �0 − 1
2 α(1 − α2 − β)

∫ τ

0

dτ

1 − α2 − e2(τ )
. (21)

Substituting the expression for e2 from equation (14), we obtain

� = �0 − α

2

1 − α2 − β

1 − α2 − ξ1

∫ τ

0

dτ

1 + [
A2/

(
1−α2−ξ1

)]
sn2(Bτ | m)

.

(22)

Introducing the Jacobi amplitude

ϕ = am(Bτ | m), (23)

with

B dτ = dϕ√
1 − m sin2 ϕ

, (24)

we can change equation (22) into

� = �0 − C

∫ ϕ

0

dϑ

(1 − n sin2 ϑ)
√

1 − m sin2 ϑ
, (25)

where

C = α

2B

1 − α2 − β

1 − α2 − ξ1
(26)

and

n = − A2

1 − α2 − ξ1
� 0. (27)

The quadrature in equation (25) is nothing other than the definition
of the incomplete elliptic integral of the third kind with argument ϕ,
modulus m and parameter n (Byrd & Friedman 1954; Abramowitz
& Stegun 1972). Hence

�(τ ) = �0 − C Π(n; ϕ(τ ) | m). (28)

A negative value of n implies the so-called circular case of the elliptic
integral of the third kind.

The evolution of � takes the form of periodic oscillations �(τ )
superimposed on a linear drift −C 0 τ , namely

� = �0 − C0 τ − �(τ ). (29)

The drift rate C0 can be deduced from the property

Π(n; ϕ + kπ | m) = 2k Π(n | m) + Π(n; ϕ | m), for k ∈ Z,

(30)

where

Π(n | m) ≡ Π(n; π/2 | m), (31)

is the complete elliptic integral of the third kind. So, knowing that
elliptic amplitude ϕ increases by π/2 in the B−1 K (m) interval of
τ , where K stands for the complete elliptic integral of the first kind,
we conclude that

C0 = C B Π(n | m)

K (m)
. (32)

The periodic part �(τ ) = �(τ + T ) has a period

T = 2B−1 K (m), (33)

the same value as the period of eccentricity oscillations.

2.4 The ω problem

Three of the four mean Keplerian elements can be directly computed
by means of the expressions we have provided. Eccentricity e(τ )
is simply the square root of e2(τ ) given by equation (14) or (18).
The longitude of the ascending node �(τ ) is explicitly defined in
equation (28). The inclination I (τ ) can be deduced from e(τ ) and α

I (τ ) = arccos

[
α√

1 − e2(τ )

]
. (34)

What about the argument of perihelion? Matese & Whitman (1989,
1992) simply propose to use the energy integral, for example com-
puting

(sin ω)2 = (e2 − β)(1 − e2)

5(1 − α2 − e2)e2
. (35)

In these circumstances we are unable to distinguish values of ω that
differ by π. This ambiguity is by no means accidental: it reflects
the fundamental symmetry properties of the Galactic disc potential
(symmetry axis perpendicular to the plane of symmetry z = 0).
For the same reason it has not been considered a serious drawback
as far as the disc perturbations alone are considered. However, the
situation will change if one is interested in the disc perturbations
as the main, unperturbed part of a more general problem like the
complete Galactic potential influence on cometary orbits. This is
our motivation to look for an unambiguous solution that allows a
proper identification of ω within the [0, 2π) interval. Although this
problem can be solved within the Lagrange equations framework,
we suspend it until Section 3, where it will be solved more easily
thanks to the use of vectorial elements.

3 V E C TO R I A L E L E M E N T S

3.1 Equations of motion

In a problem defined by a potential averaged with respect to the
mean anomaly, elegant and symmetric equations exist for the time
derivatives of the Laplace vector

e ≡
(

e1

e2

e3

)
= e

(
cos ω cos � − c sin ω sin �

cos ω sin � + c sin ω cos �

s sin ω

)
, (36)

and of a dimensionless angular momentum vector

h ≡
(

h1

h2

h3

)
=

√
1 − e2

(
s sin �

−s cos �

c

)
. (37)

These ‘vectorial elements’ were initially introduced instead of Kep-
lerian elements by Milankovitch (1939). They reappeared in papers
by Musen (1961) and by Allan & Ward (1963). Allan & Cook (1964)
provided a simplified form of Musen’s equations, valid for an aver-
aged system without explicit time dependence,

ḣ = h × ∂V ∗

∂h
+ e × ∂V ∗

∂e
, (38)

ė = e × ∂V ∗

∂h
+ h × ∂V ∗

∂e
, (39)

where V ∗ was an averaged perturbing potential 〈V 〉 divided by
n0a2. The authors noticed two identities,

h · e = 0, h2 + e2 = 1, (40)
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indicating that only four of the six vectorial elements are indepen-
dent – the number exactly matching the four Keplerian elements
involved in the definitions of h and e.

Vectorial elements possess an excellent property: they are free of
all singularities related to vanishing line of nodes, zero eccentricity,
polar motion or straight-line degeneracy. The non-singularity will
be clearly visible in the equations of motion derived from the scaled
perturbing potential

K∗ = K1

ε2n2
0a2

= 1
4

(
1 − h2

3 − e2
1 − e2

2 + 4e2
3

)
, (41)

where an additional factor ε−2 n−1
0 has been introduced to change

the independent variable from t to τ , and Keplerian elements have
been expressed in terms of e and h components.

Using K∗ instead of V ∗, we obtain from equations (38) and (39)
the equations of motion:

h′
1 = − 1

2 h2h3 + 5
2 e2e3, (42)

h′
2 = 1

2 h1h3 − 5
2 e1e3, (43)

h′
3 = 0, (44)

e′
1 = 2e3h2, (45)

e′
2 = −2e3h1, (46)

e′
3 = 1

2 (e1h2 − e2h1). (47)

The reader should note that equations (42)–(47) are non-singular:
there are no divisors to vanish and the right-hand sides are C∞. In
the following discussion we will refer to the system (38)–(39) or its
particular form (42)–(47) using the acronym MAC (Milankovitch–
Allan–Cook) equations.

3.2 Analytical solution

Recalling the results of Section 2 and the definition of e and h, one
may guess that it should be possible to solve the MAC equations
in terms of elliptic functions and elliptic integrals. However, is this
an easy way? Skipping equation (44), which admits an immediate
solution h3 = α, the remaining equations can be transformed into
the set of second-order equations

h′′
1 = −[

1
4 (α2 − 3β) + 2e2

]
h1, (48)

h′′
2 = −[

1
4 (α2 − 3β) + 2e2

]
h2, (49)

e′′
1 = −(α2 − β − 1 + 2e2)e1 + 2αh1e3, (50)

e′′
2 = −(α2 − β − 1 + 2e2)e2 + 2αh2e3, (51)

e′′
3 = −(2β − γ )e3 − 10e3

3. (52)

A simplification of the right-hand sides has been achieved thanks to
the relations (40) and the prime integral (6) that now reads

β = e2 − 5e2
3 = 1 − h2 − 5e2

3. (53)

Nevertheless, equations (48)–(52) form a set of Hill’s equations with
the remarkable exception of equation (52). Not only is it decoupled

from the remaining subsystem, but it is also a classical textbook
creature known as the Duffing equation (Nayfeh 1973). Observe
that e3 = es sin ω, and thus knowledge of e3(τ ) will bring us closer
to the knowledge of ω(τ ).

Let us inspect the new vector q =h × e. Its third component is

q3 = e2h1 − e1h2 =
√

(1 − e2) es cos ω. (54)

Here is our missing tile to fill the ω puzzle.
Thus we adopt the following route to solve the MAC equations.

First, we solve equation (52), then we find q 3(τ ), and finally we
substitute all the results for e(t), �(t) and ω(t) into the primary
definitions (36) and (37), obtaining e(τ ) and h(τ ).

3.2.1 Solution for e3

Equation (52) is a Duffing equation without damping and forcing
terms and its solution has the general form (Nayfeh 1973; Coppola
& Rand 1990)

e3 = C3 cn(B3τ + φ0 | m3), (55)

with 0 � m 3 < 1. If m 3 > 1 equation (55) still holds true, but in
such a case the inverse modulus transformation is usually preferred
(Byrd & Friedman 1954). Although the qualitative study of Breiter
et al. (1996) considered the Laplace vector in the nodal reference
frame, their conclusions concerning e3 and e remain valid in our
case, because the axis normal to the Galactic disc is common in
both cases. Thus we can set φ0 = 0 and

C3 = ±
√

e2
max − β

5
= ±

√
ξ1 − β

5
, (56)

because the maximum value e2
max = ξ 1 is always attained when e2

3 is
maximum (i.e. at ω = π/2 or ω = 3π/2). If the independent variable
τ is measured from the maximum of e at ω = π/2, we select C 3 >

0. The minus sign in equation (56) should be adopted if τ = 0 when
the maximum of e occurs at ω = 3π/2. Note that in the circulating
perihelion regime (β > 0) the choice of ω = π/2 or ω = 3π/2 is
a matter of convention (in this paper we adopt ω = π/2). If β < 0
and the perihelion librates, it stays close to either ω = π/2 or ω =
3π/2, and the choice of the sign is unique and necessary.

Differentiating twice the solution (55) we can express the left-
hand side of (52) as

e′′
3 = −C3 B3(sn dn)′

= −C3 B2
3 cn dn2 + C3 B2

3 m3 sn2 cn

= C3 B2
3 (2m3 − 1) cn − 2m3C3 B2

3 cn3

= B2
3 (2m3 − 1)e3 − 2m3 B2

3 C−2
3 e3

3. (57)

Equating the coefficients of e3 and e3
3 in equations (52) and (57), we

obtain

m3 = ξ1 − β

ξ1 − ξ2
, B3 = √

κ, (58)

valid as long as m 3 < 1, i.e. for β > 0. If β is negative, the inverse
modulus transformation can be used,

cn(B3τ | m3) = dn(
√

m3 B3τ | m−1
3 ), (59)
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and so the complete e3 solution is

e3(τ ) =




√
ξ1 − β

5
cn(Bτ | m) for β > 0,

±
√

4 − 5α2

2
√

5 cosh [
√

(4 − 5α2) τ/2]
for β = 0,

±
√

ξ1 − β

5
dn(Bτ | m) for β < 0,

(60)

where m and B are the same as in equations (15), (16) and (17). The
± symbol reminds us that a proper sign should be selected for those
types of motion that are restricted to e3 > 0 (plus sign) or e3 < 0
(minus sign). For β > 0 we always select τ = 0 at ω = π/2 and
hence no sign alternative is given.

3.2.2 Solution for q3

Comparing equations (47) and (54), one spots a simple relation

q3 = −2e′
3. (61)

Hence, knowledge of q 3(τ ) can be gained thanks to a direct differ-
entiation of equation (60) and we obtain

q3(τ ) =




2√
5

AB sn(Bτ | m) dn(Bτ | m) for β > 0,

± (4 − 5α2) tanh [
√

(4 − 5α2) τ/2]

2
√

5 cosh [
√

(4 − 5α2) τ/2]
for β = 0,

± 2√
5

A2 sn(Bτ | m) cn(Bτ | m) for β < 0.

(62)

The ± sign choice is similar to the e3 case, and A, B and m have
their usual meanings.

Owing to the fact that e, s and
√

1 − e2 are all non-negative, we are
able to determine the value of ω(τ ) without any ambiguity – either
using a two-argument arcus tangent function of some programming
languages, or resorting to the tangent of half-angle formulae:

ω = 2 arctan

(
e3

√
1 − e2

q3 + e
√

1 − α2 − e2

)

= 2 arctan

(−q3 + e
√

1 − α2 − e2

e3

√
1 − e2

)
. (63)

3.2.3 Vectorial elements solution

Now we may substitute all the previous results into the definitions
of h and e in terms of Keplerian elements. In terms of �(τ ), e2(τ ),
e3(τ ) and q 3(τ ), we obtain the momentum vector

h1(τ ) =
√

1 − α2 − e2(τ ) sin �(τ ), (64)

h2(τ ) = −
√

1 − α2 − e2(τ ) cos �(τ ), (65)

h3(τ ) = α. (66)

The first two components of the Laplace vector are

e1(τ ) = q3(τ ) cos �(τ ) − αe3(τ ) sin �(τ )√
1 − α2 − e2(τ )

(67)

and

e2(τ ) = q3(τ ) sin �(τ ) + αe3(τ ) cos �(τ )√
1 − α2 − e2(τ )

. (68)

It is worth noting that, if �(τ ) = 0 is set in equations (67)–(68), we
obtain the time dependence of the Laplace vector components in the
nodal frame. In that frame the evolution of e is periodic for all β �=
0, in agreement with the qualitative results of Breiter et al. (1996).

4 L I E – P O I S S O N I N T E G R ATO R

Knowing an analytical solution is important for the understanding of
phenomena related to the motion of comets in the Oort Cloud under
the action of Galactic disc tides; it is indispensable if the radial
tide is to be introduced as a perturbation of the disc tide. However,
numerical integration may happen to be more efficient from the
computational point of view. In the present section we show that
equations of motion (42)–(47) can be numerically integrated by
means of efficient and elegant Hamiltonian methods.

4.1 MAC equations are Hamiltonian

Interestingly, equations (38)–(39) are actually Hamiltonian equa-
tions of motion. They can be derived from a Hamiltonian V ∗, being
a function of variables v = (h1, h2, h3, e1, e2, e3)T. ‘Hamiltonian’
does not mean ‘canonical’ in this case, because a non-canonical
Lie–Poisson bracket

( f ; g) ≡
(

∂ f

∂v

)T

J(v)
∂g

∂v
(69)

should be used to obtain equations (38)–(39) in the form

v̇ = (v; V ∗). (70)

The structure matrix J(v) differs from the standard symplectic ma-
trix S of the canonical formalism

S =
(

0 I

−I 0

)
. (71)

In our case it is

J(v) =
(

ĥ ê

ê ĥ

)
, (72)

where the ‘hat map’ of any vector x = (x 1, x 2, x 3)T is defined as

x̂ =
(

0 −x3 x2

x3 0 −x1

−x2 x1 0

)
, (73)

helping to represent a vector product as a matrix product. For any
x, y ∈ R

3

x̂y = x × y. (74)

4.2 Splitting method basics

Any system of differential equations can be numerically integrated
by a so-called ‘splitting method’ if only we can split its right-hand
sides into a sum of such terms that each of them generates an explic-
itly solvable problem. An extensive review of this technique can be
found in (McLachlan & Quispel 2002). Restricting our discussion
to a two-term splitting, we consider the problem

ẏ = f (v) = f 1(y) + f 2(y), (75)

C© 2005 The Authors. Journal compilation C© 2005 RAS, MNRAS 364, 1222–1228



Galactic disc tide 1227

where y is a vector of variables and f (v) is the vector of right-hand
sides split into the sum of f 1 and f 2. Let the operator � 1,� stand
for the solution of ẏ = f 1(y), i.e. given the initial conditions y0 at
t = t 0 we obtain y(t 0 + �) = � 1,� y0. Similarly we define � 2,�

as the solution of ẏ = f 2(y). An elementary first-order integrator
is then obtained as a composition

y(t0 + �) � �2,� ◦ �1,� y0 + O(�2). (76)

It is worth noting that if the operators commute, i.e.

�2,� ◦ �1,� = �1,� ◦ �2,�, (77)

then equation (76) represents the exact solution of the full system
and the error term O(�2) can be dropped.

Higher-order methods result if � 1 and � 2 are composed with
properly chosen substeps �. For example, the widespread Störmer–
Verlet ‘leapfrog’ integrator is defined as

y(t0 + �) � �1, 1
2 � ◦ �2,� ◦ �1, 1

2 � y0 + O(�3). (78)

If the equations of motion possess some symmetry properties, it is
desirable to split f in such a way that both f 1 and f 2 share the same
properties as f . In particular, if the differential system is Hamilto-
nian, with f = (y;H), the logical approach is to obtain f 1 and f 2

from two components of the Hamiltonian function H = H1 + H2.
Then we have f 1 = (y;H1) and f 2 = (y;H2). In these circum-
stances, the resulting maps � 1 and � 2 will represent Hamiltonian
motions and the same will hold true for their composition. This
strategy leads to well-known ‘symplectic integrators’ if the Poisson
bracket is canonical Yoshida (1993). Obviously it is also valid for
more complicated Poisson brackets: an example can be found in
Touma & Wisdom (1994). In order to apply a splitting method to
the problem of Galactic disc perturbations, one should find the two
maps � 1 and � 2 by solving the equations of motion for the vari-
ables v with the Lie–Poisson bracket (72) and partitioned Hamilto-
nian function (41). Obviously, any constant term in the Hamiltonian
function has no influence on the equations of motion, so we replace
K∗ by

H = K∗ − 1
4 = 1

4

(−h2
3 − e2

1 − e2
2 + 4e2

3

) = H1 + H2. (79)

We propose the following partition:

H1 = − 1
4

(
e2

1 + e2
2 + e2

3

) = − 1
4 e2, (80)

H2 = 1
4

(
5e2

3 − h2
3

)
. (81)

As we will show below, both terms define problems easily solvable
in terms of elementary functions.

4.3 Motion induced by H1

Let us solve

v′ = (v; H1) = −1

4

(
∂v

∂v

)T

J(v)
∂(e2)

∂v

= −1

2

(
ĥ ê
ê ĥ

)(
0
e

)
. (82)

As we see, H1 generates the equations of rotation around the fixed
vector h

h′ = 0, (83)

e′ = − 1
2 h × e. (84)

Hence, the solution of equation (82) takes the simple matrix
form

�1,�v0 =
(

I 0

0 M1(h0, �)

)(
h0

e0

)
, (85)

where, according to the Euler–Rodrigues formula (Marsden & Ratiu
1999)

M1(h, �) = I + sin ψ1

h
ĥ + 2

sin2 (ψ1/2)

h2
ĥĥ, (86)

and the rotation angle is

ψ1 = − 1
2 h�. (87)

From the geometrical point of view, this part of the Hamiltonian
induces the rotation of the Laplace vector along the orbital plane.

4.4 Motion induced by H2

In our opinion the most instructive way to solve v′ = (v;H2) is to
take an indirect path, partitioning the Hamiltonian (81) into H2 =
H21 + H22, where

H21 = − 1
4 h2

3, H22 = 5
4 e2

3. (88)

The equations of motion generated by H21 are

h′ = 1
2 (0, 0, h3)T × h, (89)

e′ = 1
2 (0, 0, h3)T × e. (90)

In other words, H21 rotates the orbital plane around the Oz axis and
so

�21,�v0 =
(

M21(h0, �) 0
0 M21(h0, �)

)(
h0

e0

)
, (91)

where

M21(h, �) =
(

cos ψ21 − sin ψ21 0
sin ψ21 cos ψ21 0

0 0 1

)
, (92)

and ψ21 = 1/2h3�.
The second part of the Hamiltonian functions leads to

h′ = (h;H22) = − 5
2 (0, 0, e3)T × e, (93)

e′ = (e;H22) = − 5
2 (0, 0, e3)T × h. (94)

For these equations we find no obvious geometrical meaning; yet,
they form a linear system admitting a simple solution

�22,�v0 =
(

M22(e0, �) N22(e0, �)
N22(e0, �) M22(e0, �)

)(
h0

e0

)
, (95)

where

M22(e, �) =
(

cos ψ22 0 0
0 cos ψ22 0
0 0 1

)
, (96)

N22(e, �) =
(

0 sin ψ22 0
− sin ψ22 0 0

0 0 0

)
, (97)

and ψ22 = 5/2e3�. Note that only this map affects the lengths of
both h and e, although the length of ||v || = 1 remains intact due
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to the properties of the Lie–Poisson bracket (69) with the structure
matrix (72).

One can observe that the two maps commute

�21,� ◦ �22,�v0 = �22,� ◦ �21,�v0. (98)

This fact could be expected from the beginning, because
(H21;H22) = 0, but one can verify it easily by evaluating the prod-
ucts of the two matrices present in (91) and (95). According to the
remark made after equation (76),this means that the exact solution
of the problem with the Hamiltonian H2 is � 2 = � 21 ◦ � 22 or, in
full,

�2,�v0 =
(

M∗ N∗

N∗ M∗

)
v0, (99)

where

M∗ =
(

c21c22 −s21c22 0
s21c22 c21c22 0

0 0 1

)
, (100)

N∗ =
(

s21s22 c21s22 0
−c21s22 s21s22 0

0 0 0

)
, (101)

and s i j = sin ψ i j , ci j = cos ψ i j .

4.5 General remarks

Using the two building blocks � 1 and � 2, defined in equations (85)
and (99), one is able to construct at will any preferred high-order
integrator. Recipes for high-order splitting method integrators and
more references can be found in Tsitouras (1999) or McLachlan
& Quispel (2002). All methods, however, will have the following
properties:

(i) the prime integral h3 = constant is conserved exactly (actually
the equation for h′

3 can be omitted);
(ii) the geometric prime integrals e2 + h2 = 1 and h · e = 0 will

be conserved up to the computer round-off errors;
(iii) the Hamiltonian functionHwill have no secular error except

for the round-off effects; the oscillations ofHwill have an amplitude
depending on the integration step.

5 C O N C L U S I O N S

The main goal of the present work was to clear the path towards an
analytical treatment of cometary perturbations due to the complete
Galactic tides model. For these reasons we have tied the loose ends of
the Matese–Whitman theory that were apparently considered unim-
portant in earlier works. In principle, the results concerning the lines
of nodes and apsides could be obtained without introducing the vec-
torial elements and their equations of motion; however, the MAC
equations are so simple and elegant that, we believe, they supersede

the Lagrange ‘planetary’ equations or canonical equations in both
accuracy and speed. All their right-hand sides are simple quadratic
forms and can be easily differentiated without the occurrence of any
singularity. We have presented an explicit Lie–Poisson integrator for
the MAC equations, but other ‘general-purpose’ numerical integra-
tors can be used as well. The simplicity of the right-hand sides offers
an opportunity to use high-order Taylor series methods. It is also pos-
sible that constant step Gauss–Legendre (or Runge–Kutta–Butcher)
integrators are the perfect match for this particular problem: they
will conserve all the integrals of motion including the Hamiltonian,
because these methods by definition conserve quadratic integrals
(Sanz-Serna & Calvo 1994).

AC K N OW L E D G M E N T S

The unpublished solution for the Laplace vector components in the
nodal frame obtained a few years ago by Professor Antonio Elipe
was an important hint leading to the general solution presented in
this paper.
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