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Abstract

A collection of new and old proofs showing that the determinant of any symplectic
matrix is +1 is presented. Structured factorizations of symplectic matrices play a key
role in several arguments. A constructive derivation of the symplectic analogue of the
Cartan-Dieudonné theorem is one of the new proofs in this essay.
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1 Introduction

This essay gathers together several proofs — some previously known, and some original
— showing that the determinant of a symplectic matrix is always +1. The proofs will be
presented only for real and complex symplectics, although the result is true for symplectic
matrices with entries from any field. While some of the arguments can be adapted to general
fields, only the proof using Pfaffians in Section 5 holds as written for any field.

Definition 1.1. A 2n× 2n matrix S with entries in the field K is said to be symplectic if
STJS = J , where J

def==
[

0 In
−In 0

]
. The set of all symplectic matrices over K is denoted by

Sp(2n,K).

Symplectic matrices can also be viewed as automorphisms of the bilinear form deter-
mined by the matrix J , that is 〈x, y〉 def== xT Jy. Recall that an automorphism of a bilinear
form on Kn is a matrix A such that 〈Ax,Ay〉 = 〈x, y〉 for all x, y ∈ Kn. It follows that
the set of all automorphisms of any fixed non-degenerate form1 is a multiplicative group.
Other examples of automorphism groups arising from bilinear forms are the orthogonal and
pseudo-orthogonal groups O(n,K) and O(p, q,K).
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It is easy to see directly from Definition 1.1 that the determinant of any symplectic
matrix (or more generally, the determinant of any automorphism of any non-degenerate
bilinear form) has to be either +1 or −1.

det(STJS) = detJ ⇒ (detS)2 detJ = det J ⇒ det S = ±1. (1.1)

What is not obvious is why a determinant of −1 is never realized by any symplectic matrix,
no matter what the field! This is especially surprising in view of the situation for matrices
in other automorphism groups like O(n,K) and O(p, q,K), where both +1 and −1 deter-
minants are easy to find. The aim of this essay is to shine some light on this unexpected
result from various angles, hoping to demystify it to some degree. Our focus then, is the
following theorem, with the field K restricted to R or C.

Theorem 1.2. Let S ∈ Sp(2n,K). Then detS = +1.

A strategy common to many of the proofs is to factor a general symplectic matrix into
a finite product of simpler symplectic matrices, each sufficiently simple that one can easily
see that their determinants are all +1. Indeed, this essay might well have been entitled
“Structured Factorizations of Symplectic Matrices” instead, with very little inaccuracy.

2 Two Proofs Using Structured Polar Decomposition

If S = QP is the polar decomposition of a symplectic matrix S, then by the structured
polar decomposition theorem in [8], both Q and P are necessarily symplectic. Hence by
(1.1), detQ = ±1 and detP = ±1. But detP must be +1, since P is positive definite. The
issue therefore reduces to proving the following proposition.

Proposition 2.1. Let Q be any real symplectic orthogonal or complex symplectic unitary
matrix. Then det Q = +1.

Two ways of proving Proposition 2.1 are presented when Q ∈ SpO(2n,R), the group
of real 2n × 2n symplectic orthogonal matrices. As far as we know these methods do not
generalize to complex symplectic unitary matrices, and a proof for this case is postponed
until Section 3.1. We begin by observing that any Q ∈ SpO(2n,R) commutes with J , and
hence has the block form Q =

[
A B
−B A

]
. Observe that it suffices to show detQ > 0 in order

to conclude detQ = +1.

First Approach In [6], relationships between a number of classes of structured complex
matrices and doubly-structured real matrices are described, together with correspondences
between their canonical forms. One part of this story is the following connection between
the group of n × n complex unitary matrices U(n), and SpO(2n,R). Let A + iB with
A,B ∈ Rn×n denote an n× n complex unitary matrix. Then the map

U(n) −→ SpO(2n,R)
A + iB 7−→ [

A B
−B A

]

is a group isomorphism [6]. Now any unitary matrix A + iB is normal, and hence unitarily
similar to D1 + iD2, where D1 and D2 are real n× n diagonal matrices. Using this isomor-
phism we may now conclude that any real symplectic orthogonal matrix Q =

[
A B
−B A

]
is
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similar via a real symplectic orthogonal similarity to D =
[

D1 D2
−D2 D1

]
. But D is permutation

similar to a direct sum of 2× 2 matrices of the form
[

c d
−d c

]
, with determinant c2 + d2 > 0.

Thus

detQ = det
[

A B
−B A

]
= det

[
D1 D2

−D2 D1

]
> 0. 2

Second Approach This argument can be found in [11]. Imitating the complex diagonal-
ization of a real 2×2 matrix

[
a b
−b a

]
, the real 2n×2n matrix

[
A B
−B A

]
can be block-diagonalized

to a complex 2n× 2n matrix as follows:

1√
2

[
In −iIn

−iIn In

] [
A B
−B A

]
1√
2

[
In iIn

iIn In

]
=

[
A + iB 0

0 A− iB

]
.

Thus we have

det Q = det
[

A B
−B A

]
= det

[
A + iB 0

0 A− iB

]
= det(A + iB) det(A− iB)

= det(A + iB) det(A + iB) > 0.

Note that A− iB = A + iB because A and B are real matrices. 2

3 Proof Using Structured QR̂ Decomposition

A constructive proof of a symplectic QR-like decomposition for any 2n×2n real or complex
symplectic matrix is now used to prove Theorem 1.2.

Proposition 3.1. For any S ∈ Sp(2n,K) there exists a factorization S = QR̂, where Q is
symplectic and unitary with detQ = +1, R̂ =

[
R Z
0 R−T

]
is symplectic, and R is n×n upper

triangular. If S is real, then Q and R can also be chosen to be real.

Clearly det R̂ = +1, and since detQ will be +1 by construction, detS is forced to be +1,
thus establishing Theorem 1.2. For conjugate symplectic matrices, that is, S ∈ C2n×2n such
that S∗JS = J , a QR-like decomposition similar to the one given here can be found in [2],
[3]. However, the determinant of a conjugate symplectic matrix can be any number on the
unit circle in the complex plane; this can be seen by considering the conjugate symplectic
matrices eiθI2n, where θ ∈ R. So the result of Theorem 1.2 does not extend to conjugate
symplectic matrices.

The construction is presented only for complex symplectic matrices S; we leave it to the
reader to check that the argument goes through in the real case in a similar fashion.

As usual in a QR-like decomposition algorithm, we start by reducing the first column[ x
y

]
of S to a scalar multiple of e1. (Here and in the following, x, y, z and w will denote

vectors in Cn.) It is important that we preserve the symplectic structure, so we do this
reduction using only tools that are symplectic as well as unitary2. This can be done in the
following three-step process:

[
x
y

]
H1−−−→
(a)

[
z

βe1

]
G1−−−→
(b)

[
w
0

]
K1−−−→
(c)

[
αe1

0

]
. (3.1)

2See [10] for further details on symplectic and symplectic unitary tools.
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Step(a): Premultiply by H1 =
[

U1 0
0 U1

]
, where U1 is any n×n unitary reflector that maps

y to βe1 ∈ Cn. It does not matter what the polar angle of β is, so there is no need
to make any special choices to keep control of it. The matrix H1 is symplectic and
unitary, and detH1 = detU1 detU1 = e−iθeiθ = +1 .

Step(b): Design a 2×2 unitary Givens rotation, G =
[

c s−s̄ c̄

]
, where detG = |c|2+|s|2 = 1,

to map
[ z1

β

] ∈ C2 to
[ w1

0

]
. Symplectically embed G in rows 1, n + 1 of I2n to obtain

a symplectic unitary matrix G1 with detG1 = +1. Once again, we do not need to
control the polar angle of w1.

Step(c): Premultiply by K1 =
[

U2 0
0 U2

]
, where U2 is an n× n unitary reflector such that

U2w = αe1 . Once again, we do not need to keep control of the polar angle of α.
Observe that K1 is symplectic and unitary with detK1 = +1.

We now pause to make a crucial observation on the consequences of having preserved
the symplectic structure. It is worth pointing out that the following lemma applies to
automorphisms of any scalar product3, not just those in the symplectic groups. We use
A? to denote the adjoint of A with respect to the scalar product under discussion. Recall
that A? is the unique matrix such that 〈Ax, y〉 = 〈x,A?y〉 for all vectors x, y. For more on
adjoints and automorphisms see [7] and [10].

Lemma 3.2. Suppose A is an automorphism of a scalar product 〈·, ·〉 on Kn, and the first
column of A is αe1 for some nonzero α ∈ K. Then the first column of the adjoint A? with
respect to 〈·, ·〉 is also a scalar multiple of e1.

Proof. It follows from the definition of adjoint that A?A = I when A is an automorphism.
Thus

Ae1 = αe1 ⇒ A?Ae1 = αA? e1 ⇒ e1 = αA? e1 ⇒ A? e1 = α−1 e1.

Remark 3.1. This proof can be used, mutatis mutandis, to show that if the jth column
(row) of an automorphism A is a scalar multiple of ek (eT

k ), then the kth column (row) of
A? is a scalar multiple of ej (eT

j ).

For symplectic matrices, the adjoint can be expressed in block form: if A =
[

E F
G H

]
where

E, F , G, H ∈ Cn×n, then A? =
[

HT −F T

−GT ET

]
. Now if the first column of A is αe1, then by

Lemma 3.2 the first column of HT is e1/α and the first column of GT is 0. Equivalently, in
A the first row of G is 0 and the first row of H is eT

1 /α. Thus our structure-preserving (i.e.
symplectic) three-step reduction of the first column of S results in a matrix of the form

Q1S = (K1 G1 H1)S =




α ∗ ∗ ∗
0 L ∗ M
0 0 α−1 0
0 N ∗ P


 , L, M, N, P ∈ C(n−1)×(n−1) (3.2)

with many more zeroes than were directly targeted by the reduction process. Furthermore
it can be shown that the submatrix S̃ =

[
L M
N P

]
forms a (2n − 2) × (2n − 2) symplectic

3By a scalar product we mean any non-degenerate bilinear or sesquilinear form on Kn.
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matrix, and the result now follows by induction: the inductive hypothesis provides a (2n−
2) × (2n − 2) symplectic unitary matrix Q̃2 such that det Q̃2 = +1 and Q̃2S̃ =

[ eR eZ
0 eR−T

]
,

where R̃ is upper triangular. Then with Q2 defined to be the symplectic embedding of Q̃2

into rows and columns 2 through n, and n + 2 through 2n of I2n, we have detQ2 = 1, and

Q2 Q1S =




α ∗ ∗ ∗
0 R̃ ∗ Z̃
0 0 α−1 0
0 0 ∗ R̃−T


 =

[
R Z
0 R−T

]
= R̂,

giving the desired factorization S = QR̂ , where Q = Q∗
1 Q∗

2 is symplectic unitary with
detQ = +1. 2

Remark 3.2. A modification of Step (c) can ensure that the diagonal entries of the upper
triangular matrix R in Proposition 3.1 are all positive. The unitary reflector U2 can always
be designed so that U2w = αe1, with α > 0. For details, see [5] or [7, Section 8.2].

Remark 3.3. A matrix R̂ =
[

R Z
0 R−T

]
where R is n × n upper triangular will be said to be

quasi-upper triangular, or quasi-triangular for short.

3.1 QR̂ Decomposition of Complex Symplectic Unitary Matrices

Suppose that we apply the construction described in Section 3 to reduce a matrix S that
is both complex symplectic and unitary to quasi-upper triangular form. Because the trans-
formations used are symplectic and unitary, the matrix iterates will remain symplectic and
unitary throughout the reduction process.

Consider the result of reducing the first column of S to αe1. Because the reduced matrix
is unitary, we must have |α| = 1, and so the first row is forced to be αeT

1 . But because the
reduced matrix is also symplectic, it must have the form shown in (3.2). This in turn forces
the (n+1)th column to be α−1en+1. Thus the double-structure-preserving reduction of the
first column of S results in

Q1S =




eiθ 0 0 0
0 L 0 M
0 0 e−iθ 0
0 N 0 P


 . (3.3)

Inductively continuing the reduction process on the symplectic unitary submatrix
[

L M
N P

]

now leads to R̂ =
[

D 0
0 D−1

]
that is diagonal rather than merely quasi-triangular, and

det R̂ = +1 is even more obvious than before.
Thus we now have a proof of Proposition 2.1 for complex symplectic unitary matrices:

any matrix of this type can be factored into a product of symplectic double Householders,
embedded symplectic Givens, and a diagonal symplectic unitary, and each of these factors
has determinant +1. This now completes the polar decomposition proof of Section 2 for
the complex case.
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4 Proofs Using Symplectic G-reflectors

In this section we exploit the mapping properties of symplectic G-reflectors developed in [7],
to give two proofs that the determinant of any real or complex symplectic matrix is +1.
Symplectic G-reflectors (called symplectic transvections in [1], [4]) are elementary transfor-
mations, i.e. rank-one modifications of the identity, that are also symplectic. In a certain
sense they are the simplest kind of symplectic transformation, since they act as the identity
on a hyperplane. Indeed, one may equivalently define symplectic G-reflectors to be those
2n × 2n symplectic matrices that have a (2n − 1)-dimensional fixed-point subspace. In [7]
it is shown that any symplectic G-reflector can be expressed in the form

G = I + βuuT J, for some 0 6= β ∈ K , 0 6= u ∈ K2n, (4.1)

and conversely, any G given by (4.1) is always a symplectic G-reflector.
The first step is to show that the determinant of any symplectic G-reflector is +1.

Three proofs of this fact are given in Section 4.1. The mapping capabilities of symplectic
G-reflectors are next developed in Section 4.2. Then in Section 4.3, G-reflectors replace
the double Householders and embedded Givens transformations used in the algorithm of
Section 3 to reduce a symplectic matrix to quasi-triangular form. This reduction results in
another proof of the determinant result very much in the spirit of the proof in Section 3.

Finally, in Section 4.4 a constructive argument shows that symplectic G-reflectors are
building blocks for the entire symplectic group — every S ∈ Sp(2n,K) can be expressed
as a finite product of symplectic G-reflectors. Since every symplectic G-reflector has +1
determinant, it follows that the same must be true for a general symplectic matrix.

4.1 Determinant of Symplectic G-reflectors

We give three proofs that the determinant of any symplectic G-reflector is +1. Two of these
proofs use the notion of isotropic vector: a nonzero vector x ∈ Kn is isotropic with respect
to some scalar product 〈·, ·〉 if 〈x, x〉 = 0. In this case, because J is skew-symmetric and the
scalar product is bilinear, 〈x, x〉 def== xTJx ≡ 0, so every nonzero vector is isotropic.

Lemma 4.1. Suppose G ∈ Sp(2n,K) is a G-reflector. Then det G = +1.

Proof by continuity: Let G = I + βuuT J be an arbitrary symplectic G-reflector. Con-
sider the continuous path of matrices given by G(t) = I+(1−t)βuuT J , with 0 ≤ t ≤ 1.
Note that G(0) = G. Now G(t) is a symplectic G-reflector for 0 ≤ t < 1, so
det G(t) = ±1 for all t < 1. But lim

t→1
G(t) = I, so by continuity detG(t) = +1

for all t, in particular for t = 0. 2

Proof by squaring: This argument can be found in Artin [1]. Observe that any sym-
plectic G-reflector is the square of another symplectic G-reflector. In particular, since
uT Ju = 0 for all u ∈ K2n, we have

G = I + βuuT J = (I + 1
2 βuuT J)2 = S2.

Thus detG = det(S2) = (detS)2 = (±1)2 = 1. 2
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Proof by eigenvalues: In [7, Proposition 6.2] it is shown quite generally that when-
ever the vector u in the formula for a G-reflector (from any automorphism group)
is isotropic, then the G-reflector is non-diagonalizable. For a symplectic G-reflector
G = I + βuuT J , the vector u ∈ K2n is always isotropic, and thus G is always non-
diagonalizable. Now since G is a G-reflector, it acts as the identity on a hyperplane,
so G has eigenvalue λ = 1 with geometric multiplicity at least 2n − 1. If G had any
eigenvalue other than λ = 1, then G would be diagonalizable. Thus a symplectic
G-reflector G has only the eigenvalue +1, and hence detG = +1. 2

4.2 Mapping Properties of Symplectic G-reflectors

The next theorem is a special case of a more general result proved in [7, Theorem 8.2] for
automorphism groups arising from a large class of scalar products. Its statement has been
specialized here for the case of the real and complex symplectic groups, where 〈x, y〉 = xT Jy.

Theorem 4.2 (Symplectic G-reflector mapping theorem).
Let x, y be distinct nonzero vectors in K2n. Then there exists a symplectic G-reflector G
such that Gx = y if and only if 〈y, x〉 6= 0. Furthermore, if G exists then it is unique, and
can be expressed as

G = I +
1

〈y, x〉 uuTJ where u = y − x. (4.2)

For the factorizations in Section 4.3 and Section 4.4, we will need to map a vector x
to e1 by symplectic G-reflectors. Building on Theorem 4.2, the next lemma shows that
this can always be done, although it may sometimes require two symplectic G-reflectors to
accomplish the task.

Lemma 4.3 (Symplectic two reflector mapping property).
Any nonzero x ∈ K2n can be mapped to e1 by a product of at most two symplectic G-
reflectors.

Proof. Let 0 6= x ∈ K2n. Since 〈e1, x〉 = eT
1Jx = xn+1, we conclude from Theorem 4.2 that

x can be mapped to e1 by a single symplectic G-reflector if xn+1 6= 0. On the other hand,
if xn+1 = 0, then we can get to e1 by a composition of two symplectic G-reflectors: send x
to some vector y with yn+1 6= 0, and follow by mapping y to e1. There are several cases to
consider.

Case 1. (xn+1 = 0, x1 6= 0)
In this case we can map x to y = en+1, since 〈y, x〉 = eT

n+1Jx = −x1 6= 0.

Case 2. (xn+1 = 0, x1 = 0, and xj 6= 0, for some j with 2 ≤ j ≤ n)
Here we can map x to y = en+1 + en+j , since 〈y, x〉 = (en+1 + en+j)T Jx = −xj 6= 0.

Case 3: (xn+1 = 0, x1 = 0, and xn+j 6= 0, for some j with 2 ≤ j ≤ n)
In this case we can map x to y = ej + en+1, since 〈y, x〉 = (ej + en+1)T Jx = xn+j 6= 0.

Thus we have shown that any nonzero x ∈ K2n with xn+1 = 0 can be mapped by a
symplectic G-reflector to y with yn+1 6= 0 (in fact yn+1 = 1); then by Theorem 4.2, y can
be mapped to e1 by a second symplectic G-reflector.
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Remark 4.1. Lemma 4.3 is a special case of a general result concerning the mapping
capabilities of G-reflectors in a large class of scalar product spaces. Suppose G is the
automorphism group of a scalar product that is symmetric or skew-symmetric bilinear,
or Hermitian or skew-Hermitian sesquilinear. It is easy to show that 〈x, x〉 = 〈y, y〉 is a
necessary condition on x, y ∈ Kn in order for there to exist some G ∈ G such that Gx = y .
In [9] it is shown, by a nonconstructive argument, that for any nonzero x, y ∈ Kn such that
〈x, x〉 = 〈y, y〉 there is a G ∈ G such that Gx = y , where G is the product of at most
two G-reflectors. This is the general “Two G-reflector Mapping Theorem”. By contrast, it
should be noted that the proof given in Lemma 4.3 for the special symplectic case of the
Two G-reflector Mapping Theorem is completely constructive.

4.3 Quasi-triangular Reduction

We now reduce S ∈ Sp(2n,K) to quasi-triangular form using symplectic G-reflectors, rather
than the symplectic unitary tools described in Section 3. Once again, the proof is construc-
tive.

Proposition 4.4. For any S ∈ Sp(2n,K) there exist symplectic G-reflectors G1, G2, . . . , Gm

such that
GmGm−1 · · ·G1 S = R̂ ,

where R̂ =
[

R Z
0 R−T

]
is symplectic, R is n × n upper triangular with only ones on the

diagonal, and m ≤ 2n .

Proof. The procedure begins by using Lemma 4.3 to map the first column of S to e1. This
requires a product T1 of at most two G-reflectors, T1 = G1 or T1 = G2G1, and by Lemma 3.2
we get

T1S =




1 ∗ ∗ ∗
0 L ∗ M
0 0 1 0
0 N ∗ P


 . (4.3)

Then one continues inductively to reduce
[

L M
N P

] ∈ Sp(2n− 2,K) to quasi-triangular form.
Since it takes at most two G-reflectors per column, we see that a product of at most 2n
G-reflectors suffices to reduce any S ∈ Sp(2n,K) to quasi-triangular form.

The only issue remaining is to see why any (2n− 2)× (2n− 2) symplectic G-reflector T̃2

used in the inductive step can also be viewed as a G-reflector in Sp(2n,K). First observe
that any (2n− 2)× (2n− 2) symplectic matrix T̃2 =

[
E F
H K

]
, whether it is a G-reflector or

not, when embedded into I2n as

T2 =




1 0 0 0
0 E 0 F
0 0 1 0
0 H 0 K


 (4.4)

will be an element of Sp(2n,K).
Now T̃2, being a G-reflector, has a basis ṽ1, ṽ2, . . . , ṽ2n−3 for its fixed hyperplane in

K2n−2. For each of these ṽi =
[

wi
zi

] ∈ K2n−2, wi, zi ∈ Kn−1, define vi =
[

0
wi
0
zi

]
∈ K2n. Then
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every vi will be fixed by T2, as will e1 and en+1. Thus H def== span{v1, v2, . . . , v2n−3, e1, en+1}
is a fixed (2n−1)-dimensional hyperplane for T2, which proves that T2 is indeed a G-reflector
in Sp(2n,K).

4.4 G-reflectors Generate the Symplectic Groups

It is possible to use symplectic G-reflectors to take the reduction of a symplectic matrix
even further than quasi-triangular form. In fact one can reduce all the way down to the
identity.

Proposition 4.5. For any S ∈ Sp(2n,K) there exist symplectic G-reflectors G1, G2, . . . Gm

such that GmGm−1 · · ·G1S = I2n, where m ≤ 4n.

Before proving this proposition, we observe that the inverse of any G-reflector is also a
G-reflector. See [7] for a geometric proof of this fact for G-reflectors in any automorphism
group G, or simply observe that G = I + βuuT J ⇒ G−1 = I − βuuT J . Thus Proposi-
tion 4.5 immediately yields a constructive proof of the following factorization result. For
nonconstructive proofs using somewhat more abstract methods, the reader is directed to [1]
or [4, pp. 373–374].

Theorem 4.6 (Symplectic G-reflectors generate Sp(2n,K)).
Every S ∈ Sp(2n,K) can be expressed as a product of at most 4n symplectic G-reflectors.

Since by Lemma 4.1 the determinant of any symplectic G-reflector is +1, this factorization
provides yet another proof that the determinant of any symplectic matrix is +1.

A basic topological property of symplectic groups, closely tied to the determinant issue,
now easily follows from Theorem 4.6.

Theorem 4.7. Sp(2n,K) is path-connected.

Proof. Express S ∈ Sp(2n,K) as a product of G-reflectors, S = G1G2 · · ·Gm. Then con-
tinuously deforming each Gj = I + βjuju

T
j J to the identity by

Gj(t) = I + (1− t)βjuju
T
j J , t ∈ [0, 1] , 1 ≤ i ≤ m

gives us a continuous path S(t) = G1(t)G2(t) · · ·Gm(t) from S to I2n in Sp(2n,K).

We now turn to the proof of Proposition 4.5. Begin the reduction of a general S ∈
Sp(2n,K) as in Section 4.3. Use Lemma 4.3 to construct a matrix T1 that maps the first
column of S to e1, thus obtaining (4.3). Now comes the unconventional, but key step.
Rather than working next on the second column — as one is accustomed to do in QR-like
decompositions — proceed instead to the (n+1)st column. Our goal is to map the (n+1)st
column to en+1 , without disturbing the first column, which has been mapped to e1. The
following lemma tells us which symplectic G-reflectors leave e1 fixed.

Lemma 4.8. Suppose G is a symplectic G-reflector such that Gx = y. Then Ge1 = e1 ⇔
xn+1 = yn+1.

Proof. (⇒ ) : yn+1 = 〈e1, y〉 = 〈Ge1, Gx〉 = 〈e1, x〉 = xn+1.
(⇐ ) : From Theorem 4.2 we know that a G-reflector mapping x to y is unique whenever
it exists, and is specified by G = I + βuuT J with u = y − x and β = 1/〈y, x〉 . Hence

Ge1 = e1 + βuuT Je1 = e1 + β〈u, e1〉u = e1 + β(xn+1 − yn+1)u = e1.
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For brevity, let x ∈ K2n denote the (n + 1)st column of T1S. By (4.3) we already have
xn+1 = 1. If it is possible to map x to y = en+1 by a symplectic G-reflector G, then by
Lemma 4.8, G will automatically send e1 to e1. By Theorem 4.2, such a G exists if and
only if 〈y, x〉 = eT

n+1Jx = −x1 6= 0.
Should x1 = 0, then we can achieve our goal in two steps. First map x to z = e1 + en+1

by a symplectic G-reflector G1. This can be done since

〈z, x〉 = (e1 + en+1)T Jx = xn+1 − x1 = xn+1 = 1 6= 0.

Furthermore xn+1 = zn+1 = 1, so G1e1 = e1 by Lemma 4.8. Then z can be mapped to en+1

by a second G-reflector G2, since 〈en+1, z〉 = −1 6= 0 ; again G2e1 = e1 by Lemma 4.8.
Thus we see that we can construct a symplectic matrix T2 such that T2x = en+1 ,

T2e1 = e1, and T2 is the product of at most two symplectic G-reflectors. (When x1 6= 0,
T2 = G, otherwise T2 = G2G1.) By Lemma 3.2 and its generalization in the accompanying
remark, this gives us

T2T1S =




1 0 0 0
0 A 0 B
0 0 1 0
0 C 0 D


 ,

where T2T1 is the product of at most four symplecticG-reflectors and
[

A B
C D

] ∈ Sp(2n−2,K).
Note, though, that we can generically expect T2T1 to be the product of just two G-reflectors.

This process can be continued inductively on
[

A B
C D

]
until S is reduced to the identity.

The comments at the end of Section 4.3, showing how the (2n− 2)× (2n− 2) G-reflectors
from the induction step may be regarded as 2n× 2n G-reflectors, again apply. Thus we see
that for any S ∈ Sp(2n,K) there are symplectic G-reflectors G1, G2, . . . , Gm, m ≤ 4n, such
that GmGm−1 · · ·G2G1S = I2n, completing the proof of Proposition 4.5. Note that for a
generic S ∈ Sp(2n,K), we expect to have m = 2n.

Comparison with automorphism groups of symmetric bilinear forms: Let G be
the automorphism group of a symmetric bilinear form, e.g. G = O(n,K) or G = O(p, q,K).
Then the Cartan-Dieudonné Theorem [1] [4, pp. 352–355], states that G-reflectors (also
known in this context as “symmetries”) generate G. Thus Theorem 4.6 can be viewed as
the symplectic analogue of the Cartan-Dieudonné Theorem. So far the analogy between
the automorphism groups of symmetric bilinear forms and the symplectic groups Sp(2n,K),
generated by a skew-symmetric bilinear form, is very close.

But when we look at the individual G-reflectors we see a striking difference. For a
symmetric bilinear form, every G-reflector has determinant −1 rather than +1 (see [7]
for a proof of this fact); thus both +1 and −1 determinants are realized in G, depending
only on whether the number of G-reflectors used to generate an automorphism is even
or odd. This very basic difference in the G-reflectors in some sense “explains” why the
determinants of general symplectic matrices behave differently than their counterparts in
other automorphism groups.

As noted in Theorem 4.7, the symplectic groups are connected. This connectedness
can be viewed as a strengthening of Theorem 1.2, since Theorem 1.2 follows from Theo-
rem 4.7 but not conversely. On the other hand, any group G associated with a symmetric
bilinear form must be disconnected, as a consequence of the existence of both +1 and −1
determinants in G.
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5 Proof using Pfaffians

The final proof presented in this essay comes from [1], and is the shortest, simplest, and
most general proof of all. Its only drawback is that it relies on some rather non-obvious
properties of Pfaffians, and thus does not go very far towards “demystifying” the symplectic
determinant result.

While the notion of the Pfaffian is particular to skew-symmetric matrices, it is very
general in the sense that these matrices may have entries from any commutative ring. The
two fundamental results needed for the proof are stated below. For further details see [1]
or [4].

• For any even integer n ≥ 2, there is a polynomial in n(n− 1)/2 variables with integer
coefficients, denoted by Pf, with the following property. For any n×n skew-symmetric
matrix K (with entries in any commutative ring), the number Pf K obtained by
evaluating the polynomial Pf at the upper triangular entries of K (i.e. Kij for i < j)
satisfies

det K = (Pf K)2.

Modulo a certain normalizing condition, the polynomial Pf is unique. Note that
Pf J 6= 0, since J is non-singular.

• Congruence transformations preserve skew-symmetry, and Pfaffians behave nicely
with respect to congruences. For any A ∈ Kn×n and any n × n skew-symmetric
K, we have

Pf(AT KA) = detA · Pf K. (5.1)

It can now be shown very quickly that any symplectic matrix, with entries from any field,
has determinant +1. Recall that A ∈ Sp(2n,K) ⇒ AT JA = J . Then equation (5.1)
implies

Pf J = Pf(AT JA) = detA · Pf J.

Cancelling Pf J shows that detA = +1. 2
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