
Mon. Not. R. Astron. Soc. 000, 1–9 () Printed 21 February 2015 (MN LATEX style file v2.2)

Tumbling asteroid rotation with the YORP torque and inelastic
energy dissipation
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ABSTRACT

The Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect and rotational energy dis-
sipation due to inelastic deformations are two key mechanisms affecting rotation of tumbling
asteroids in long term. Each of the effects used to be discussed separately. We present the
first results concerning a simulation of their joint action. Asteroids (3103) Eger and (99942)
Apophis, as well as their scaled variants, are used as test bodies. Plugging in the dissipation
destroys limit cycles of the pure YORP, but creates a new asymptotic state of stationary tum-
bling with a fixed rotation period. The present model does not contradict finding Eger in the
principal axis rotation. For Apophis, the model suggests that its current rotation state should
be relatively young. In general, the fraction of initial conditions leading to the principal axis
rotation is too small, compared to the actual data. The model requires a stronger energy dissi-
pation and weaker YORP components in the nutation angle and obliquity.

Key words: celestial mechanics—minor planets, asteroids: general—minor planets, aster-
oids: individual: (3103) Eger, (99942) Apophis

1 INTRODUCTION

The radiation torques, usually referred to as the YORP (Yarkovsky-
O’Keefe-Radzievskii-Paddack) effect, have been shown to domi-
nate the secular evolution of spin state of small Solar System bod-
ies. Since the first notion by Rubincam (2000), several features
of this effect have been examined. In particular, the strength of
YORP has been proven to depend strongly on the shape of the body,
including also medium and minor scale surface features (Statler
2009; Breiter et al. 2009). The induced changes in obliquity de-
pend strongly on the assumed value of thermal conductivity (Čapek
& Vokrouhlický 2004). The role of conductivity in the rotation rate
evolution depends on the adopted model: it comes into play mostly
through the conduction in small boulders, as shown by Golubov &
Krugly (2012).

The vast majority of earlier works dealt with the YORP ef-
fect under a simplifying assumption of principal axis rotation, in
which the body spins around the axis of maximum inertia. Cor-
responding to the minimum of kinetic energy, this state has often
been heuristically argued to be a reasonable assumption. Only a few
papers considered the problem of the YORP effect in general rota-
tion state. The numerical simulation of Vokrouhlický et al. (2007)
discovered asymptotic tumbling states with constant obliquity of
angular momentum, but involving secular variations of the rotation
period. Cicaló & Scheeres (2010) issued a semi-analytical model
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that occurred to be conservative, but suggested that a further de-
velopment may lead to the asymptotic nature of the newly found
equilibria. Finally, Breiter, Rożek & Vokrouhlický (2011) pushed
the semi-analytical model further and not only obtained the agree-
ment with Vokrouhlický et al. (2007), but also discovered a new
type of asymptotic states – limit cycles.

The YORP effect is not the only nongravitational factor to
be taken into account when the non-principal axis (NPA) rotation
of small bodies is considered. Another important mechanism acts
due to periodically oscillating centrifugal acceleration of NPA. The
body responds by periodic deformations, with a fraction of me-
chanical energy lost as heat in each stress-strain cycle. Conserv-
ing the total angular momentum, the mechanism drains kinetic en-
ergy, which leads to the nutation damping – the spin axis drifts
towards the principal axis of maximum inertia, leaving the rota-
tion rate intact. The more excited wobbling is, the more intensively
the energy is dissipated. This mechanism, identified by Prendergast
(1958), has been thoroughly studied within a standard quality fac-
tor approximation (e.g. Burns & Safronov 1973; Efroimsky 2000;
Sharma et al. 2005; Breiter et al. 2012), but none of existing so-
lutions is considered entirely satisfactory. In particular, using the
quality factor Q as a constant parameter, independent on the forc-
ing frequency, has met a harsh criticism (e.g. Efroimsky & Makarov
2013). Nevertheless, there exist generic properties of the inelastic
dissipation process in asteroids. For example, a faster spinning ob-
ject should damp the nutation more efficiently than a similar ob-
ject spinning slower. On the other hand, the rule that larger bod-
ies damp nutation faster hinges upon the (arguable) assumption of
size-independent quality factor Q.
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Recently, Wiegert (2015) reminded about meteoroid impacts
as another important factor, but this effect will be left beyond the
scope of the present analysis.

The majority of asteroids are found in the principal axis rota-
tion; up to date, only 58 objects have been identified as the NPA
rotators (Pravec et al. 2014). In principle, it means that the inelastic
energy dissipation dominates over such tumbling triggers as col-
lisions, close flybys, and the YORP effect. However, the problem
also has an observational selection aspect: tumbling objects are a
significant fraction of smaller asteroids with a long rotation period
– both properties unfavorable for photometry (Pravec et al. 2014).

The present work is the first attempt to see the combined ac-
tion of the YORP and inelastic nutation damping models. To this
end, we integrated the averaged equations of rotation adding the
right hand sides taken from two papers by Breiter, Rożek and
Vokrouhlický (2011; 2012). The former is a semi-analytical de-
scription of spin-state evolution of an asteroid under the action of
the YORP torque, whereas the latter presents an analytical solu-
tion for energy dissipation in the case of a freely rotating triaxial
ellipsoid.

Section 2 briefly describes our semi-analytical model and the
general form of the equations to be integrated. Only the most es-
sential information is given, but an interested reader may find miss-
ing details in the two referenced articles. Section 3 provides data
for two sample asteroids to be analyzed: (3103) Eger and (99942)
Apophis. The choice is rather arbitrary, but not random. The case
of YORP on a tumbling Eger-shaped object was studied in the ear-
lier paper, which allows a comparison of the new results with nu-
merous figures from Breiter et al. (2011). The recent observations
of Apophis found it in a well determined tumbling state and the
influence of inelastic dissipation (without YORP) is discussed in
Pravec et al. (2014). Thus, we choose one non-tumbler with YORP
discussed earlier, and one actual tumbler with published nutation
damping considerations, and ask about the change in picture after
treating the joint YORP and dissipation mechanism. The results for
both objects, as well as for their scaled versions, are presented in
Section 4. In Section 5 we try to establish fractions of possible final
states on a grid of initial conditions. General conclusions are stated
in Section 6.

2 MODEL

In order to follow the concurrent action of radiation torques and in-
elastic dissipation on an asteroid within a reasonable computation
time, one should use equations of motion averaged at least with re-
spect to rotation angle, but preferably with respect to the precession
and nutation angles, and orbital motion as well. With this require-
ment, striving for best semi-analytical models available, the authors
had a very limited choice.

Most of the dissipation models refer to spheroid – an unre-
alistic model for irregular minor bodies. The notable exception of
a triaxial cuboid considered by Efroimsky (2000) was restricted
to small deviations of angular momentum vector from the princi-
pal axis. The only alternative has been to use the results of Breiter
et al. (2012), providing the energy dissipation formula for a homo-
geneous triaxial ellipsoid.

As far as the YORP effect is concerned, the only two models
allowing a tumbling rotation are these of Cicaló & Scheeres (2010)
and Breiter et al. (2011). As mentioned in the Introduction, the for-
mer is not realistic because of a prematurely truncated expansion of
the insolation function, hence the choice of the latter, in spite of all
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Figure 1. Angular momentum vector G evolution on a G = const sphere in
the body frame b1, b2, b3 for the free rotation of Eger. Dashed lines mark
the separatrices as borderlines between four rotation modes. Nutation angle
θs for three exemplary rotation curves is shown.

its shortcomings. Its notable limitations include, first of all, the ab-
sence of heat conduction effects. Others, which might be overcome
in future, but have been adopted in the present work, involve the
homogenous, convex shape model and Lambertian scattering and
emission.

In present work, we consider two types of excited rotation:
short-axis (SAM) and long-axis (LAM) modes, depending on
which principal axis of inertia the angular momentum vector G cir-
culates around. Moreover, setting a body frame with axes b̂1, b̂2,
b̂3, with b̂1 along the minimal and b̂3 the maximal axis of inertia
tensor, we discriminate between SAM+ and SAM–, according to
the sign of the product Ĝ · b̂3; similarly, we speak about LAM+ or
LAM– according to the sign of Ĝ · b̂1 in the LAM case (see Fig. 1).
In order to reduce the number of variables, we use the angular mo-
mentum length G =∥G ∥ and two polar angles: obliquity ε between
orbital angular momentum (normal to the orbit plane) and G, and
the nutation angle θ – understood as the maximum value of angle
between G and a relevant principal axis b3 or b1 attained during
one nutation cycle (see Fig. 1). The latter is closely related to the
dynamical inertia ∆ =A−1 from Breiter et al. (2011) and replaced
it in Breiter et al. (2012).

Even if the body frame for a particular object is right-handed,
and aligned with the principal axes of the inertia ellipsoid, the
particular choice of bi direction remains arbitrary (i.e. arbitrarily
fixed by the authors of the shape model). The influence of reflec-
tion bi → −bi on two physical components of our model is dif-
ferent. The energy dissipation, based upon a symmetric ellipsoid
model, is simply invariant with respect to reflection. For the action
YORP, one should bear in mind the fact that it results from the net
torque of an asymmetric body surface, hence it inherits the prop-
erties of vector product. A simple reflection bi →−bi changes the
handedness of the frame, leading to the inversion of the torque di-
rection. This explains why the YORP components of evolution in
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SAM+ and SAM– (or LAM+ and LAM–) differ only by the di-
rection of the flow. On the other hand, combining two reflections,
like (b1, b3)→ (−b1,−b3), equivalent to a rotation, simply results
in the new SAM+ looking like the previous SAM– etc. Anyway,
although the particular location of SAM+/– or LAM+/– is a mat-
ter of axes choice, the two regimes have to be distinguished in all
studies involving the YORP effect.

Adding the right hand sides of the averaged equations of mo-
tion from Breiter et al. (2011) and Breiter et al. (2012) we obtain
the following set for the mean angular momentum, obliquity and
nutation angle with the subscript s referring to the mode (s = 1 for
LAM and s = 3 for SAM)

Ġs = − κ
′

K(ks)

∑
n>1

Θ0
2n(cosε)Gs,n, (1)

ε̇s = − κ′

Gs K(ks)

∑
n>1

Θ1
2n(cosε) Es,n, (2)

θ̇s =
a4ρmG3

sa5
s

µQ (as −a2)
Ψs

sinθs cosθs

+
κ′

Gs K(ks)
a2 − (a2 −as)cos2 θs
(a2 −as) sinθs cosθs

∑
n>1

Θ0
2n(cosε)∆s,n. (3)

Explaining the multitude of symbols present in the above equa-
tions, let us begin with the YORP related Gs,n, Es,n, ∆s,n, which
are functions depending on the shape of the body and current θs
angle value; their explicit form is rather extensive and can be found
in Breiter et al. (2011). Θm

2n are normalized associated Legendre
functions (of degree 2n and order m). K(ks) stands for the complete
elliptic integral of the first kind; its modulus ks depends on nutation
angle (both the quoted papers use the same quantity, its expression
in terms of θs is given in Breiter et al. (2012)). Ψs, depending on
θs, is the energy dissipation function as expressed in Breiter et al.
(2012). Actually, all the enumerated functions depend also on the
principal moments of inertia I j through their inverse values

a j =
1
I j
. (4)

Physical parameters include Lamé elasticity (shear) modulus µ,
quality factor Q, bulk density ρ, mass m, and the major semi-axis of
the equivalent ellipsoid a used in the nutation damping term. The
factor κ′

κ′ =
π

3
VΦ0

c
√

1− e2

(
d0

ao

)2
, (5)

involves the velocity of light c, body volume V , orbital eccentricity
e, orbital semi-axis ao, and nominal heliocentric distance d0 = 1 au
for the solar constant Φ0.

The energy dissipation does not directly affect angular mo-
mentum or obliquity, so the relevant term is added only in θ̇s equa-
tion. Still, the YORP effect depends on nutation angle, so the con-
tribution in θs due to dissipation influences Ġs and ε̇s as well.
Moreover, one can observe that increasing rotation rate reduces the
strength of YORP in obliquity and nutation angle (division by Gs
in the right hand sides) while boosting the energy dissipation rate.

Equations (1-3) describe the secular evolution of the system,
averaged with respect to rotation, precession-nutation and orbital
motion. They must be integrated numerically, which we did with
the use of RA15 – 15-th order Radau-Everhart integrator (Everhart
1985). We excluded from the considerations two regions of mo-
tion: the vicinity of separatrices between SAM and LAM, where
the chaotic zone arises (there the averaging process fails), and the

close neighborhood of the principal axes. The latter exclusion is
technical – due to an apparent singularity in the present form of the
energy dissipation term. Accordingly, we set the integration limits
in nutation angle to 0.◦1 < θs < 85◦. We also exclude the rotation
so slow that it violates the averaging assumptions, assuming the
rotation period of 10 years as a limit.

In the next sections we omit the subscript s for the sake of
brevity, assuming that its value either follows from the context
(SAM or LAM mode discussed), or is irrelevant for general con-
siderations.

3 SAMPLE OBJECTS

For the reasons explained in Introduction, we consider two exem-
plary asteroids. The first one, (3103) Eger, has the volume V ≈
0.419×1010 m3 (effective radius 1 km), and the moments of inertia
equal I1 = 0.245×1019, I2 = 0.518×1019, I3 = 0.634×1019 kgm2,
if density ρ = 2000 kg/m3 is assumed. The torque coefficients
for the convex shape model are included in Table D1 of Breiter
et al. (2011). We take the observational value of rotational period
P = 5.7 h as the starting point for the estimation of initial angular
momentum.

The second object is (99942) Apophis, which has been re-
cently found to be in a tumbling spin state by Pravec et al. (2014).
Photometric data imply that this asteroid exhibits SAM rotation
with θ = 55◦+9

−20 and period P = 30.56 h. The rotation is retrograde,
because the angular momentum vector is tilted in respect to the or-
bit normal with the obliquity ε = 165◦. According to the newest
observational data quoted by Müller et al. (2014), the volume of
this object is V ≈ 2.76 × 107 m3 (effective radius 187 m), lead-
ing to the moments of inertia I1 = 0.296×1015, I2 = 0.475× 1015,
I3 = 0.513×1015 kgm2, in the convex shape model of Pravec et al.
(2014). The leading YORP torque coefficients, computed according
to this shape, are gathered in Tab. 1. Similarly to Eger, we assume
ρ = 2000 kg/m3.

Figure 1 has been plotted using the moments of inertia of Eger.
With these values, the area of SAM is significantly smaller than the
one of LAM. Actually, the case of Apophis has the same property.

In order to apply the energy dissipation model of Breiter et al.
(2012), the equivalent ellipsoid semi-axes are necessary. They can
be determined in terms of the actual principal moments of inertia
tensor of an asteroid. For the semi-axes c < b < a, the appropriate
expressions are

c =

√
5(I1 + I2 − I3)

2m
, (6)

b =

√
5 I1

m
− c2, (7)

a =

√
5 I2

m
− c2. (8)

In all computations we use the usual value of the damping factor
µQ = 1011Pa (e.g. Pravec et al. 2014).

4 RESULTS

4.1 (3103) Eger

First, let us recall the YORP-only evolution of an Eger-shaped ob-
ject. Breiter et al. (2011) recorded some equilibria points in nuta-
tion and obliquity angles with unlimited growth or decrese of angu-
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Table 1. YORP torque coefficients of (99942) Apophis for the model of
Breiter et al. (2011).

n m xn,m yn,m zn,m

2 0 −0.00798098 0.0 0.00159986
2 1 0.0011569 −0.000149372 −0.00599647
2 2 −0.00266466 0.00659003 0.0129006
4 0 0.000331171 0.0 −0.00136936
4 1 −0.000231354 0.0013934 −0.000936665
4 2 −0.0000532971 0.000271434 −0.00084783
4 3 −0.000928463 0.00137383 0.00237507
4 4 −0.000398232 −0.00276132 0.00115615

lar momentum (already recognized by Vokrouhlický et al. (2007)).
In particular, stable spiral points appear in SAM+ and LAM–, hav-
ing increasing G, while unstable spiral points that emerge in SAM–
and LAM+ are associated with decreasing G value. Both types are
related to θ ≈ 45◦, and ε trapped around 55◦ or 125◦. The SAM–
state is generally unstable – all the orbits leave it through the sep-
aratrix. Moreover, the previously undetected limit cycles in LAM
were observed: stable (LAM+) and unstable (LAM–). All the tra-
jectories originating inside them stay in the LAM. The rotation
around the principal axis appears to be unstable under the action
of YORP torque; the tumbling motion tends to be sustained. With
the loss of angular momentum and rotation rate, the chaotic zone
around separatrices expands, eventually destabilizing the asymp-
totic points or cycles.

How does the picture change after including the inelastic dissi-
pation? The results of our simulations are displayed as curves in the
plane of θ and ξ = cosε, originating at cross marks. The grey area
covers the values of nutation angle below 15◦ that are not recogniz-
able as NPA rotation with the use od standard photometry (Henych
& Pravec 2013). Generally, in (θ,ξ) plane, inelastic dissipation acts
by pushing the plot points horizontally to the left; any vertical mo-
tion is exclusively YORP-driven, and any motion to the right means
that the YORP effect overpowers the inelastic dissipation. During
the evolution of rotation state, the strength of inelastic dissipation
is affected by two factors: it decreases when approaching the prin-
cipal axis (small θ) or when the rotation slows down (crossing the
areas where Ġ < 0 due to the YORP).

Fig. 2 presents the evolution of Eger in SAM. In SAM+, pre-
sented in left panel, there are three possible final states. If evolution
starts at |ξ| & 0.8 (almost normal to the orbital plane), the wobbling
is damped to principal axis rotation. The curves starting at smaller
|ξ| are initially are driven leftwards, but once the dissipation weak-
ens at θ < 20◦, they are repelled from the principal axis region by
the YORP. Some of them (|ξ| = cos40◦ ≈ 0.77) hit the separatrix,
and their future fate is unknown. The same initial conditions for the
YORP alone, would bring the motion towards one of the stable spi-
ral points at ξ ≈ 0.6, known from Fig. 4 (SP) of Breiter et al. (2011),
but the dissipation destroys the attractors. However, some other in-
teresting feature appears: the curves originating closer to the value
of ε = 90◦ reach a stable state of tumbling in the orbital plane with
constant period of around 10 h and nutation angle ∼ 47◦. This third
final state is a real novelty.

When discussing the YORP effect, one may notice that the
difference between SAM+ and SAM– amounts to a simple time re-
versal, leaving the shape of the curves intact. But there, the integral
curves on the (θ,ξ) plane did not depend on the value of angular
momentum G. Now the situation is quite different, and the inter-

changing of the positive and negative Ġ areas has serious conse-
quences. The orbits with 60◦ . ε . 120◦ (i.e. |ξ| . 0.5) end up at
the principal axis, whereas those further from the orbital plane are
dragged back to the right and then drift towards the former unsta-
ble spiral point from Fig. 4 (SM) of Breiter et al. (2011). We cannot
exclude a further migration to ξ = 0, like it has happened in SAM+,
but the drift takes place in the Ġ < 0 area, so we stop the integra-
tion at the rotation period of 10 years, considering further tracking
unreasonable.

In addition, we performed the integration for the mirror Eger
shape introduced in (Breiter et al. 2011), that is, the shape of Eger
as reflected with respect to the xz plane; the results are similar to
the ones for ordinary Eger with reversed +/– mode sign.

The long axis mode with the YORP alone presented a rich
portrait with spiral points and stable limit cycles. None of them
survives the presence of inelastic dissipation and all the trajecto-
ries we tested exited this mode through the separatrix. This should
be expected, because energy dissipation in LAM is considerably
stronger than in SAM (Breiter et al. 2012).

Scaling Eger down by factor 10, we have obtained an exam-
ple of a hundred-meter size body. Appropriate adjustments include
multiplying the moments of inertia by 10−5, and the volume by
10−3. As it follows from Eq. (3), the energy dissipation is much
weaker for such a body, whereas the YORP effect is stronger. In-
deed, Fig. 3 is much more YORP-like; it does resemble Fig. 4 of
Breiter et al. (2011), yet with one notable exception. In the pure
YORP case, the stable spiral point in SAM+ corresponds to the
growth of angular momentum. But this increases the energy dissi-
pation and after 22 My, the angular momentum vector is brought
to the equilibrium in the orbital plane – the same as in Fig. 2, but
with a 10 times shorter rotation period of 1 h. In SAM–, trajectories
quickly end up in the vicinity of the separatrix, in good agreement
with the YORP-only evolution.

The LAM rotation (Fig. 4) progresses almost similarly to the
pure YORP case, but the stable limit cycles are no longer present
and sooner or later, all the trajectories leave the mode. Most of those
entering through the separatrix do it rather quickly. In LAM+, the
curves coming from the inside of the previous limit cycle and the
ones attracted to it from the outside, slide along its remnants but
they are forced by inelastic dissipation to finally hit the separatrix.
In LAM–, the attracting equilibrium points coincide with Ġ > 0,
so the angular momentum can stay there only until the increasing
energy dissipation rate removes it into the separatrix zone.

Increasing the size of Eger 10 times, we have obtained a quick
migration to the principal axis rotation with no observable distor-
tion of paths due to the YORP.

4.2 (99942) Apophis

Due to its moderately excited state, the rotation of (99942) Apophis
must be shaped by the influence of both YORP effect and inelas-
tic energy dissipation. Since only the latter has been addressed by
Pravec et al. (2014), we begin by studying the influence of the
YORP alone for various possible initial rotation states of this ob-
ject. Figure 5 shows the results obtained in SAM and LAM. Only
the SAM+ and LAM+ are displayed, because, as already noted,
the curves for SAM– and LAM– look similarly, except that they
are traversed in the opposite direction.

Although lacking stable limit cycles, Fig. 5 remains simi-
lar to the case of Eger by the presence of equilibria at θ ≈ 25◦,
ε ≈ 37◦,143◦ (SAM) or θ ≈ 38◦, ε ≈ 55◦,125◦ (LAM). In SAM+,
the spiral points are unstable and placed at the Ġ < 0 area; and
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Figure 2. Evolution of the Eger rotation in SAM, projected on the plane of nutation angle θ (in degrees) and cosine of obliquity ξ.

Figure 3. Evolution of rotation for a 10 times smaller Eger shaped object.

Figure 4. Same as in Fig. 3 but for the LAM case.
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Figure 5. Evolution of (99942) Apophis rotation under the action of the YORP effect alone.

SAM– is opposite in both respects. The spiral points of LAM+
are stable, having a larger basin of attraction than their short axis
mode analogues. Their location corresponds to the speed-up of ro-
tation (Ġ > 0) which would imply a stronger stability as far as the
YORP is concerned, but it makes them vulnerable to the inelastic
energy dissipation. Generally, from the point of view of the YORP
effect, Apophis has no chance to exhibit a regular rotation and ei-
ther should settle down in one of the LAM+ or SAM– stationary
tumbling states, awaiting a fission breakup, or – more likely – it
should irregularly revisit the chaotic separatrix neighborhood.

Fig. 6 displays how the evolution of both SAM types of rota-
tion is altered when energy dissipation is taken into account. The
trajectories in SAM+ seem to be only slightly disturbed. Obvi-
ously, the most interesting is the actually observed rotation state
of Apophis. The initial conditions from Pravec et al. (2014) are
marked with a red star. They refer to θ = 55◦, although the error
bounds imply 35◦ < θ < 64◦. However, any value in this range leads
Apohis towards the separatrix (in less than 2 ky for the nominal red
curve originating at θ = 55◦). On the other hand, even smaller error
bounds would not allow to distinguish if the present state has been
reached from the separatrix zone, or from the neighborhood of the
principal axis. A positive statement can be made, that the majority
of the initial states with retrograde rotation are YORP-driven close
to ε = 180◦, so the present obliquity of Apophis does not contradict
the model and may be considered natural. Interestingly, the action
of the YORP in the principal axis rotation would be quite different,
driving the spin axis towards ξ ≈ 0.4.

The spiral points in SAM– are only temporarily stable after
the addition of nutation damping; while nutation angle θ and pe-
riod P reach asymptotic values of approximately 25◦ and 1.2 h,
respectively, the obliquity of angular momentum slowly slides to-
wards 0◦ or 180◦, where the stable point is found after over 600 My.
Assuming the Apophis to be in the SAM– rotation (which means
θ = 55◦ measured from the south pole of the shape model) we see
that in 3 My its tumbling should be damped, resulting in the prin-
cipal axis rotation, with ε = 90◦, and a systematic speed-up. Yet,
thinking about error bounds on θ, any other scenario is likely. On
the other hand, the past is fixed, implying the arrival from the sep-
aratrix zone, although with rather particular obliquity, close to its
present value.

The situation in LAM, shown in Fig. 7, resembles the SAM

case: the curves are only slightly distorted by the inelastic energy
dissipation and only the behaviour of the previously stable spiral
points in LAM+ is different. Growing angular momentum increases
energy dissipation, and the latter results in the drift towards the sep-
aratrix. All trajectories originating in LAM– exit this mode through
separatrix similarly to the proper YORP case.

Increasing the diameter of Apophis by the factor of 10, we
obtain an object comparable in size to the actual Eger. We have
studied the scaled asteroid in all rotation modes, but only the short
axis mode (Fig. 8) reveals new features. A SAM+ pair with initial
ε = 80◦,100◦ (i.e. |ξ| ≈ 0.17) was attracted by the YORP-unstable
spiral points (θ ≈ 25◦ and ε ≈ 38◦,142◦), where it stayed until
the rotational period exceeded the assumed limit of 10 y. Another
SAM+ pair, starting at ε= 85◦,95◦ (i.e. |ξ| ≈ 0.09) also migrates to-
wards the same spiral points but spends a considerable time looping
around them until it spirals outward to hit the separatrix. In SAM–
(Fig. 8 right), the majority of trajectories entering through the sep-
aratrix leave this mode. However, those with initial obliquity close
to 0◦ or 180◦ are attracted by the former sink at θ ≈ 25◦, where the
rotation period stabilizes close to 12 h. Like in Fig. 6, the obliquity
is asymptotically driven towards 0◦ or 180◦, but the process is 10
times longer. Although the object is hypothetic, we have retained
the red star for the initial conditions of the actual Apophis or its
SAM– version.

5 FINAL STATE MAPS

In previous Sections we have identified 4 basic outcomes of simu-
lation for the two exemplary objects. In order to acquire some idea
about how likely is each of them, we performed six scans on grids
of 629 initial conditions of nutation angle 2◦ 6 θ 6 82◦, and obliq-
uity 0◦ 6 ε 6 180◦, with a 5◦ spacing in both variables. The results
are presented in Fig. 9, where the shade of each rectangle repre-
sents the final state resulting from the initial conditions located at
its centre. White colour refers to entering a potentially chaotic zone
around a separatrix. Light grey means that the rotation period de-
creased to the level of 10 y – an unstable state beyond the limits
of validity for the model. Dark grey indicates a stationary tumbling
with an asymptotically fixed rotation period. Finally, the principal
axis rotation is marked black. All initial conditions for a given ob-
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Figure 6. Evolution of SAM rotation under the action of YORP effect and inelastic energy dissipation for (99942) Apophis.

Figure 7. Same as in Fig. 6 but for LAM rotation.

Figure 8. Rotational evolution of 10 times larger Apophis in the case of SAM.

c⃝ RAS, MNRAS 000, 1–9



8 S. Breiter and M. Murawiecka

2 22 42 62 82

180

150

120

90

60

30

0

Θ

¶

Eger: SAM+

2 22 42 62 82

180

150

120

90

60

30

0

Θ

¶

Eger: SAM-

2 22 42 62 82

180

150

120

90

60

30

0

Θ

¶

Apophis: SAM+

2 22 42 62 82

180

150

120

90

60

30

0

Θ

¶

Apophis: SAM-

2 22 42 62 82

180

150

120

90

60

30

0

Θ

¶

fast Apophis: SAM+

2 22 42 62 82

180

150

120

90

60

30

0

Θ

¶

fast Apophis: SAM-

Figure 9. Final states reached from given initial conditions (5◦ × 5◦ grid) in SAM mode for Eger (left), Apophis (middle) and a 10 times faster spinning
Apophis shaped body (right). Shades legend: white – separatrix zone, light grey – period decreased below 10 y, dark grey – stationary tumbling with stable
period, black – principal axis rotation.

ject use the same rotation period P, and the damping parameter was
set µQ = 1011Pa.

For an Eger-shaped body (P = 5.7 h) in SAM+, a moderate
fraction of initial states (38%) results in the actually observed prin-
cipal axis rotation. In SAM– the fraction is smaller, i.e. about 20%.
In both cases the basin of attraction for the principal axis rotation
is well confined for the obliquity: 30◦ around the orbit normal in
SAM+, and ±30◦ around the orbital plane in SAM–. Since the ac-
tual rotation state of Eger is θ < 15◦, and ε ≈ 175◦ (SAM+), there
is no contradiction between the adopted model and observational
facts. Interestingly, the majority (69%) of the initial conditions in
SAM– leads to the critical slowdown to P > 10 h, making the tum-
bling around the south pole of the Eger figure model quite unlikely
– even more if we add the 6% for the separatrix zone hits. The situ-
ation in SAM+ is different, because only 24% of the cases exit this
mode through the separatrix, whereas the remaining 38% settles in
down in stationary tumbling. The last state emerged also in SAM–
in 5% of the cases, but it happened only for the angular momentum
normal to the orbital plane. From the point of view of the statistics
provided by Pravec et al. (2014, Fig. 8), the dimension and rota-
tion period of Eger locate it in the area completely dominated by
principal axis rotators. In these circumstances, the 29% of initial
conditions leading to this state from both SAM modes is rather less
that expected.

The Apophis, less affected by the inelastic dissipation due to
its smaller radius and a longer rotation period (P = 30.5 h), has a
different statistics of the final states (Fig. 9 – middle). The SAM+

is mostly unstable: 95% of initial conditions end up in the separa-
trix zone. The remaining 5% lead to the principal axis rotation –
all concentrated in particular lines of ε = 0◦,90◦,180◦. Indeed, one
might guess this result from the small sample shown in Fig. 6. The
situation in SAM– is more interesting: although 52% of cases lead
to the separatix, and only 3% end in the principal axis, a signifi-
cant remainder of 44% results in stationary tumbling. In contrast
to the SAM+, the principal axis rotation results from initial condi-
tions on the border between well separated separatrix and station-
ary tumbling zones. It seems that according to the present model,
an Apophis precessing around the south pole of its figure model
would be more likely than the actually observed one unless, apart
from the limitations of the model, its present rotation state is rel-
atively young (less than ∼ 103 y since a collision or since the exit
from the separatrix zone). Overall, the simulation is coherent with
the placement of Apophis in tumbling rotation zone of Pravec et al.
(2014, Fig. 8).

In order to estimate the influence of the initial rotation period
on the distribution of the final states, we have increased the rotation
rate of an Apophis-shaped body. The “fast Apophis” considered in
Fig. 9 (right) has a ten times shorter initial period P = 3 h. The dif-
ference is not drastic. In SAM+, a small area of critical slow-down
(P < 10 y) has appeared, involving 7% of the initial states – all
in the neighborhood of the orbital plane. The small (6%) fraction
of the the initial conditions ending in the principal axis are mostly
placed along ε = 90◦, and at the normal to the orbital plane. Nev-
ertheless, the overwhelming majority (87%) lead to the separatrix.
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The patterns in SAM– remain similar, although proportions have
changed in favor of principal axis (13%), and stationary tumbling
(49%). However, still 39% of initial conditions lead to the separa-
trix. Thus, principal axis rotation is unlikely for the “fast Apophis”,
yet it should be placed in the region dominated by principal axis
rotators according to Pravec et al. (2014, Fig. 8).

6 CONCLUSIONS

Aware of all handicaps and limitations of the applied model, we
hope that some patterns revealed in the present study may have
reference to physical reality. In our opinion, the most interesting
result is the existence of stationary tumbling states as attractors in
the discussed model. Unlike the pure YORP states, they involve
a stabilized rotation period on a physically plausible limit of few
hours. The nature of these states is definitely worth further inves-
tigation. For a while, we can only remark, that their location and
presence is determined by two factors: first, it must coincide with
a Ġ = 0 line which is exclusively YORP-based; second, it needs
an equilibrium between the opposite action of inelastic dissipation
and the YORP in nutation angle θ. Physical properties of an as-
teroid don’t have much influence on the former, but the latter is
strongly dependent on both damping coefficient µQ and thermal
conductivity. Regretfully, the influence of the thermal conductiv-
ity in the tumbling rotation YORP is yet a domain of speculations.
One may guess it to be analogous with the YORP in obliquity for
the principal axis rotation, i.e. decreasing the strength by a constant
factor if the conductivity is small. If the guess is true, the station-
ary tumbling should happen closer to the principal axis – maybe
even in the θ . 15◦ zone observationally considered a simple ro-
tation state. Depending on the values of the YORP-induced ε̇, the
tumbling state may either become stationary at some arbitrary ε, or
it slides along a Ġ = 0 curve to ε = 0◦, 90◦, or 180◦ – all the three
values having ε̇ = 0 (true only in linear thermal models or in a cir-
cular orbit case – see Breiter et al. (2010)). It is also not clear, to
what extent the situation will change if a more elaborate rheology
model replaces the constant µQ parameter.

The above remarks about the dependence on physical param-
eters remain of importance when we try to judge the present model
in the context of prevailing principal rotation states in the observa-
tional data. The fraction of principal rotation states resulting from
our simulations is definitely too low to match reality. Moreover,
it may even be overestimated due to stopping the integration at
θ = 0.◦1, which gives no chance to a long-term, YORP-based desta-
bilization. Thus, a reasonable conclusion is that either the energy
dissipation mechanism should be considerably stronger than as-
sumed, or the action of YORP in the spin axis attitude should be
weaker, or – most likely – both.
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