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Abstract

We have computed the integrated autocorrelation function for different families
of geosynchronous, inclined orbits in order to detect the regions of chaotic mo-
tion. In order to reduce the problems due to high eccentricity orbits, the loga-
rithmic Hamiltonian regularization was applied and a symplectic integrator of the
Wisdom-Holman type was implemented. The orbits were integrated for an interval
of 10 000 days. The results indicate that non-predictable orbits can be found in this
relatively short time in the separatrix zone of the 1 : 1 tesseral resonance. Their
chaotic nature results from the interchange between libration and circulation type
of motion, and from the significant eccentricity growth, caused by the Kozai-Lidov
resonance. Some of these orbits intersects the Earth’s surface in time shorter than
20 years for a particular initial geometry of interacting bodies.
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1 Introduction

Dynamics of geosynchronous, inclined satellites is still an important question,
mostly for the safety of geostationary belt objects. The goal of this work
is to define regions of the Keplerian elements space where the motion of a
geosynchronous satellite under the action of gravitational forces of the Sun,
the Moon, the Earth and the solar radiation pressure becomes unpredictable
on the timescale of 27 years.
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The results of our previous work (Breiter et al., 2005), dedicated to the regular-
ity of geostationary satellites motion problem, indicate that chaotic behavior
show such orbits that lie close to the separatrix between the libration and cir-
culation modes, and that this type of chaoticity consist in unforseen changes
between these two regimes of motion. Present paper is a continuation of that
work. It takes into consideration all geosynchronous orbits with optionally
inclination and eccentricity.

From among the Lyapunov exponents, and related or other indicators used to
detect the exponential instability of orbits we apply the chaos indicator based
on the integrated autocorrelation function.

In previous works, the Lyapunov exponents or related indicators were used
to detect the exponential instability of orbits. In the present work we use the
chaos indicator based on the integrated autocorrelation function.

We present the maps of this chaos indicator on three different parametric
planes: orbital semi-major axes and longitudes of nodes (a, λ), eccentricities
and arguments of perigee (e, g), and eccentricities and inclinations (e, i). A
regularized symplectic integrator helps us to produce such maps for a wide
range of initial conditions, including higher initial eccentricities.

2 Regularized Hamiltonian and the integration scheme

We studied the motion of a satellite in the geocentric Equator-Equinox ref-
erence frame. The perturbing forces were zonal and tesseral harmonics of the
Earth’s gravity field, gravitational action of the Sun and the Moon and the
direct radiation pressure (without a shadow function).

A symplectic, Wisdom-Holman type integrator in the logarithmic Hamiltonian
formulation was applied. The method, well suited for highly eccentric orbits,
is explained in details in (Mikkola et al., 2002), so here we just recall the
Hamiltonian and its partition.

The extended phase space, introduced to formally suppress the explicit de-
pendence of the Hamiltonian on time, consists of Cartesian coordinates, and
time variable (r, t), and their conjugated momenta (p, p0). The momentum
p0 is equal to minus the total energy, i.e. p0 = U − Tk, where Tk is the kinetic
energy, and U is the force function (negative potential) of the problem

U =
µ

r
+ U1 =

µ

r
+ UE + UM + US + USP , (1)

composed of µ/r – the Keplerian force function of the Earth, UE – it’s zonal
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and tesseral part

UE =
µ

r

N
∑

l=2

l
∑

m=0

(

ae

r

)l

Plm(sin φ)(Clm cos m λG + Slm sin m λG), (2)

where φ, λG are appropriately the satellite’s latitude and longitude in the
Greenwich-based rotating frame. In calculus, as the integration is performed
in the inertial frame, the longitude λG is replaced with λeq, the equinoctical
longitude, through relation λG = λeq − S, where S is the rotational phase of
the Earth computed as S = nEt + S0, with nE the angular velocity of Earth’s
rotation and S0 the Greenwich sideral time at the moment t0.

The UM and US are force functions of the Moon and Sun

Ub = µb

(

1

∆
−

r rb

r3
b

−
1

rb

)

, (3)

with ∆ = ||r− rb||, and µb – the gravity parameter of a third body.

The USP describes the solar radiation pressure function

USP = −Pr
S

m
Cr

(

1 AU

r⊙

)2
r · r⊙
r⊙

, (4)

where Pr is the solar constant per speed of light, S/m is the satellite area to
mass ratio, and Cr is the satellite surface reflectivity coefficient.

The logarithmic Hamiltonian (Mikkola et al., 2002)

L = ln(T + p0) − ln U, (5)

split in two parts

L=Lk + Lp,

Lk = ln(Tk + p0) + ln r, (6)

Lp =− ln (µ + r U1) ,

permits to formulate the time transformed equations of motion in respect of
the new time-type variable s.

The quasi-Keplerian motion results from Lk as:

dr

ds
=

p

Tk + p0

,
dt

ds
=

1

Tk + p0

=
1

U
,

dp

ds
= −

r

r2
,

dp0

ds
= 0, (7)

3



and the perturbations are generated by Lp

dr

ds
=0,

dt

ds
= 0,

dp

ds
=

1

µ + r U1

(

∂(rUE)

∂r
+

∂(rUM)

∂r
+

∂(rUS)

∂r
+

∂(rUSP )

∂r

)

, (8)

dp0

ds
=

1

µ + r U1

(

∂(rUE)

∂t
+

∂(rUM )

∂t
+

∂(rUS)

∂t
+

∂(rUSP )

∂t

)

.

The normal set of Hamiltonian equations can be get back via multiplication
both sizes of equations (7) and (8) by ds/dt = U .

Equations (7) and (8) admit explicit solutions that we composed according
to the symmetric, fourth order symplectic integration algorithm of Yoshida
(1993). Thanks to the Wisdom-Holman type partition of L (Wisdom and Hol-
man, 1991), the resulting integrator has the local truncation error proportional
to εh4, where h is the stepsize and ε is the small parameter proportional to the
ratio of U1 to µ r−1. Equations (7) can be easily and quickly integrated using
the “explicit leapfrog” described by Preto and Tremaine (1999) and Mikkola
et al. (2002), whereas the perturbation system (8) admits a simple “kick”
solution – a linear function of the integration step.

3 Autocorrelation algorithm

Chaos detectors can be divided in two principal categories: ones that measure
the exponential divergence of two initially close orbits are more or less directly
related with the Lyapunov exponents, other aim at establishing the loss of
information about the initial state on a single orbit. The latter group usually
exploits the power spectrum of the presumably quasi-periodic motion. It is well
known that the autocorrelation of given time series will exponentially decay
as a function of lag if the motion is chaotic. This chaoticity test is actually
of the spectral type, because the Fourier transform of the autocorrelation is
equal to the power spectrum of the original time series (Sprott, 2003). The
fastest way to compute the autocorrelation for large number of lags is to use
the Fast Fourier Transform algorithm, but its results are less accurate than
using a direct approach – especially for larger lags.

There exist two standard definitions of the autocorrelation function, based on
constant or instantaneous variances. The constant variance autocorrelation
function C at the lag k for an equally spaced time series

r = {ri : ri = r(f(t0 + i h)), 0 ≤ i ≤ N},
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Fig. 1. The integrated autocorrelation function versus the lag number for a regular
(left plot) and chaotic (right plot) orbit.

is usually defined by the formula (Sprott, 2003)

Ck =

∑N−k
i=0 (ri − r)(ri+k − r)
∑N−k

i=0 (ri − r)2
, (9)

where r = (N + 1)−1∑N
i=0 ri is a mean value of all ri data.

But a definition more reliable for large lags is known as a product-moment
autocorrelation function (Veldman, 1967)

Ak =

∑N−k
i=0 (ri − ri)(ri+k − ri+k)

(

∑N−k
i=0 (ri − ri)2

∑N−k
i=0 (ri+k − ri+k)2

)1/2
, (10)

where rt = (t + 1)−1∑t
i=0 ri is the mean value of a t-elements subset of data.

This definition, although more costly from the computational standpoint, was
applied in the present paper.

How to define a single number that reflects the properties of the autocorrela-
tion sequence Ak? For periodic or quasi-periodic orbits Ak oscillate between
−1 and 1. In a chaotic system it decays exponentially and time elapsed to the
moment when the amplitude of oscillations decays below 1/e = 0.367879 is
proportional to the Lyapunov time (Sprott, 2003). Some authors use the value
of the last lag k when the absolute value of the autocorrelation exceeded 1/e
as the estimate of the Lyapunov time (Tsiganis et al., 2003). In this paper
we use a different indicator: the integrated autocorrelation function, formally
defined as the mean of autocorrelation squares A2

k.

In order to reduce the computation time, not all lags will be used to sum the
squares of Ak. To check for exponential decay it is quite reasonable to sample
the large lags more densely than the small ones. Reversing the idea of Wahl
et al. (2003), we use exponentially spaced sample points

j0 = 0, j1 = 1, jk = jk−1 + 2[(k−1)/B], (11)
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where [x] stands for the integer part of x and B is an integer base number. If
B = 1 the sample points are {0, 1, 2, 4, 8, 16, 32, . . .}; for larger values of B, the
sample points are grouped into sequences of B points, each sequence spaced
twice as sparsely as the previous one.

Starting from the series jk we define lags Jk = jk∗ − jk∗−k, where k∗ is the
last index used to generate sample points according the Equation (11). Hence,
Jk∗ = jk∗ is the last lag considered. The integrated autocorrelation function
(IACF) may than be computed with these “reverse exponential lags” using
the sum

A(Jk∗) =
1

Jk∗

(

1 +
k∗

∑

k=1

(Jk − Jk−1)A
2
Jk

)

. (12)

All the results presented in this paper are based on the numerical integration
covering a time span of 104 days with an integration step equal to 1/20 of an
orbital period. Autocorrelation was computed from the Cartesian x coordinate
of the satellite up to the lags reaching 75% of the data sample (using Ck instead
of Ak one should typically restrict the lags to some 25% at most). Comparing
the values of the integrated autocorrelation A obtained with base numbers
B equal 20, 40 and 1000, we found that they differ by at most 5%. We have
finally adopted B = 40 as a cautious choice that still guarantee a considerable
reduction in computation time.

The integrated autocorrelation function for constant time series r tends asymp-
totically to A = 1. If r represent a uniformly sampled sine wave, the A function
converges to 0.5. For other periodic and quasi-periodic time series A tends to
a finite value not far from 0.5. Chaotic orbits result in A asymptotically de-
creasing to zero with a speed proportional to the time of exponential decay
time. Two exemplary plots of A as a function of lag for regular and chaotic
orbits are presented in Fig. 1.

4 Results

The motion of geosynchronous satellites under the joint action of gravity fields
of the Earth, the Moon, and the Sun, as well as of the solar radiation pressure,
was studied on a time span of 104 days (about 27 years), starting from t0 =
JD2000 + 79d. The epoch t0 was chosen close the the first day of the Spring
of the year 2000, when the Sun stayed close to the Equinox. The geopotential
included spherical harmonics up to degree and order 4 of the EGM96 model
(Lemoine et al., 1987). Coordinates of the Moon and the Sun, required at each
step of integration, were computed according to the “low accuracy formulas”
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Fig. 2. IACF as a function of the initial a and λ for the family of orbits with the
initial g = 0◦, and l = 0◦. Left: the orbits with initial e = 0.05, and i = 75◦. Right:
e = 0.2, and i = 29◦.

from the Astronomical Almanac (2000, pp. C1 and D46). In every simulation
the area-to-mass ratio of a satellite was taken as S/m = 0.005 m2 kg−1, and
the coefficient of reflectivity of the surface was equal 1.14 for all objects.

4.1 The semi-major axis – longitude map

Figure 2 show dependency of the integrated autocorrelation function on initial
semi-major axes a and the right ascensions of the ascending node λ for two
families of inclined orbits. The plot to the left was obtained for the family
of orbits with initial equatorial inclination i = 75◦ and initial eccentricity
e = 0.05. At the right hand side we present the results for orbits with initial
i = 29◦ and e = 0.2. In both cases the remaining initial elements argument of
perigee and mean anomaly were g = l = 0◦.

The semi-major axis grid is 1 km, starting from a = 42100 km, and the longi-
tude grid is 1◦; thus, each map presents a sample of 54000 orbits. Thanks to
our choice of the initial epoch t0, the right ascension of the node h corresponds
to the geographical longitude of a satellite λ and was a critical angle of the
tesseral resonance 1 : 1.

Similarly to the MEGNO indicator, applied by Breiter et al. (2005) to the
problem of regularity of geostationary satellites motion, the autocorrelation
function nicely depicts the librational zones of the 1:1 resonance around two
stable equilibrium points at longitudes of about 75◦ and 255◦. The separatrix
of the resonance, passing by two unstable points at longitudes 165◦ and 345◦,
contains some chaotic orbits characterized by the value of the IACF in the
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Fig. 3. The eccentricity e and the argument of perigee g for the interval of about
170 years. The remaining initial elements in the rotating equatorial frame were
a = 42166.25 km, e = 0.05, i = 75◦, l = g = 0◦, h = 343◦.

range 0.09 < A < 0.2. The orbital chaos is reflected in the intermittency of
libration and circulation – the phenomenon already observed for the GEO ob-
jects (Breiter et al., 2005; Kuznetsov, 2005). Orbits in the separatrix layer may
swap between the two libration zones, inner circulation, and outer circulation
modes. The motion becomes unpredictable – occasionally even on a time scale
of a few years.

There is a clear asymmetry in the number of chaotic orbits in the vicinity
of the two unstable points with the excess at the 345◦ longitude point. The
asymmetry is more visible for orbits with higher eccentricities where the libra-
tion zones look like to be disconnected at the unstable point of 165◦ longitude.
This results from the initial geometry of a satellite, the Moon and the Sun.
At the chosen date all three bodies were almost aligned: a satellite and the
Moon over the geographical longitude of 165◦ and the Sun on the opposite
side of the Earth, in the direction to the Equinox coinciding with the Green-
wich meridian. Such a configuration causes the Moon to stabilize the motion
of a satellite. Individual integrations show that such a motion is regular for
longer than 150 years. The ”window” of stable satellite motion lasts of about
10 days.

The widths of the two libration zones are also different: the zone surround-
ing the stable point at longitude 75◦ longitude is wider. Both are the effect
of higher degree harmonics of the geopotential that differentiate the radial
distance of equilibrium points.

The width of the resonant zone diminishes with increasing inclination. For a
GEO-belt object it is of the order of 80 km, for a satellite with i = 29◦, it does
not exceed 60 km, and for i = 75◦ it shrinks to about 40 km.
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Outside the separatrix layer, the dynamics looks regular on the interval of 27
years. The conclusion is drawn however on the basis of low initial eccentricities
orbits and relatively short integration intervals.

4.2 Eccentricity – argument of perigee

Unlike the GEO-belt objects, all satellites inclined to the ecliptic by more than
the critical angle ie ≈ 40◦ experience a considerable growth of eccentricity. The
phenomenon was discovered for artificial satellites by Lidov (1961) and soon
rediscovered in the dynamics of asteroids by Kozai (1962). A typical feature of
the Kozai-Lidov resonance is the libration of the argument of perigee around
90◦ or 270◦.

Figure 3 presents dependence of the eccentricity on the argument of perigee for
the orbit with high inclination to the equator (i = 75◦). Its initial eccentricity
is equal to e = 0.05, and at t0, when the satellite crossed the equator in its
perigee, the longitude of orbital node was equal to h = 343◦. The orbit was
integrated for a time interval of 63000 days. During the first 50 years, the
eccentricity grows from the initial value e = 0.05 up to e = 0.8. In the same
time, the argument of perigee increases from 0◦ to 90◦ and then starts to loop
around g = 90◦. Such a librational motion (for high inclined orbits) around
g = 90◦ or g = 270◦, accompanied by significant growth of orbital eccentricity
neither depends on initial eccentricity nor on initial argument of perigee. Even
originally circular orbits evolve to very high values of eccentricity, except that
they need more time to achieve first maximum. This example sheds some
light on the results presented in the next figures.

Figure 4 shows the IACF maps on the plane of initial eccentricities and ar-
guments of perigees. The first map (left) was computed for orbits with initial
inclination to the equator of i = 75◦; the second (right) was generated for
orbits with i = 29◦. The remaining elements of both groups, related to the
Equator-Equinox frame, were a = 42166.25 km, l = h = 0◦ (note that in
this case the initial g = λ). Each orbit was evaluated for the usual 104 days
interval. Bright vertical regions originating at the bottom lines of the two
maps refer to the orbits trapped in the 1:1 tesseral resonance libration around
λ = 75◦ and λ = 255◦. Darker, vertical “pillars” mark the neighborhood of
unstable equilibria. Interestingly, the g = 160◦ pattern is more prominent for
low inclination orbits. The bright regions in Fig. 4, with A very close to 0.5,
consist of stable, librating orbits similar to the one presented at the left hand
side of Fig. 5. The initial elements in the rotating equatorial frame for this
orbit were: a = 42166.25 km, e = 0.4, i = 29◦ l = h = 0◦ and the argument of
perigee g = 80◦. The semi-major axis during the 27 years oscillated in a small
range of about 10 km, and in the xy plane (rotating with the Earth) the orbit
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Fig. 4. IACF maps on the eccentricity-perigee plane for the semi-major axis
a = 42166.25 km. To the left – a family of orbits with initial i = 75◦, to the right
– with i = 29◦. The remaining initial elements for both groups were l = h = 0◦.
The value A = −0.1 (black color) was artificially added to the map scale in order
to mark that orbits that intersect the Earth surface.

made tight loops around the stable point of λ = 75◦. Such kind of motion is
stable for a very long period of time of the order of hundreds of years. The
discussed orbit was separately integrated on the time span of 500 years and
during that time its eccentricity oscillated in the range 0.36 < e < 0.44, its
inclination did not leave the interval 12.5◦ < i < 30◦, and the semi-major axis
showed a small, very long period drift causing the oscillations to change from
the range 42162 < a < 42172 km in 27 years up to 42156 < a < 42185 km
after 500 years, generating a bit wider belt of libration in the xy plane.

Darker belts, originating at e = 0, g = 160◦ or e = 0, g = 350◦ contain orbits
that cross the tesseral resonance separatrix layer. Those at large eccentricities
are not subjected to the effects of the 1:1 tesseral resonance, and there the
main perturbing factor is the gravitational influence of the Sun and the Moon.
Orbits close to the separatrix wander between different regimes of motion like
the example given at the right hand side of Fig. 5. The initial elements of the
orbit were a = 42166.25 km, e=0.4, i = 29◦, l = h = 0◦, and g = 180◦. During
the first 10 years the satellite performed the inner circulation; then it started
to swap between the libration, outer circulation and inner circulation in an
irregular manner.

The light, stable zones in Fig. 4 for i = 29◦ shrink as the eccentricity grows,
reflecting the narrowing of the libration zones. But for i = 75◦ the situation
is different: before the shrinking can be noticed, the Kozai-Lidov resonance
comes into play and small stable zones appear, concentrated around g = 90◦

and g = 270◦.
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Fig. 5. Two 29◦ inclined orbits with elements in the rotating equatorial frame equal:
a = 42166.25 km, e = 0.4, l = h = 0◦. To the left – the orbit with the initial perigee
g = 80◦; to the right – with g = 180◦. The x and y coordinates are also in the
rotating frame; the units are Earth’s radii.

It is important to notice a fast eccentricity growth for the orbits with i = 75◦

and the initial arguments of perigees close to 0◦, 90◦, 180◦ or 270◦. These zones
are marked black on the left map in Fig. 4. Actually they are slightly displaced
and concentrate around g = −10◦, 110◦, 160◦, 290◦. The displacement results
from the location of the Sun and the Moon at epoch t0. At that epoch the Sun
and the Moon were almost on opposite sides. The Sun was passing through
the vernal equinox whereas the right ascension of the Moon was somewhat
larger than 12h.

The black zones in Fig. 4 have particular meaning: they are labeled as A =
−0.1, but this value is purely fictitious – it simply marks the orbits that
crossed the Earth surface during the integration interval. For the given semi-
major axis it means that their eccentricity exceeded the limit e = 0.84. The
Earth-grazing orbit zones are well confined, consisting of two similar patterns
shifted by 180◦. They start at e = 0.34 and g = 170◦ or g = 350◦.
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Fig. 6. IACF maps on the eccentricity - inclination plane. Two maps at the top were
generated for orbits with a = 42166.25 km, l = g = 0◦, and differ by the value of h.
The map on the left was made for h = 0◦, and to the right with h = 90◦. A = −0.1
marks the Earth-grazing orbits. The map at the bottom presents a = 42466 km,
and l = g = h = 0◦.

4.3 Eccentricity – inclination

Three maps of A on the eccentricity – inclination plane are presented in
Fig. 6. Two of them were computed for the geostationary semi-major axis
a = 42166.25 km, l = g = 0◦, and two different right ascensions of the ascend-
ing nodes: h = 0◦, and h = 90◦. The third map presents higher orbits, with
the initial semi-major axis equal to a = 42466 km, and l = g = h = 0◦.

The map for the supergeostationary semi-major axis shows the e − i space
with the third body effects causing the Kozai-Lidov-driven eccentricity growth.
However, even for sufficiently high initial inclinations and eccentricities, the
time span of 27 years is too short for orbital eccentricity to grow above
e = 0.84, thus the map mostly contains regular orbits.
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Two maps computed for the geostationary semi-major axis show the interplay
of the tesseral 1 : 1 and the Kozai-Lidov resonances. The first (left) map was
made for initial angles l = g = h = 0◦. Recalling that the choice of t0 provided
us with the vernal equinox close to the Greenwich meridian, we note that the
initial right ascension of the node h is also close to the initial longitude of the
node. Thus, the initial node of the first family of orbits is near λ ≈ 0◦, close
to the unstable equilibrium point λ = −15◦, and was almost aligned with the
line connecting Sun and Moon. The whole family of orbits is thus located in
the vicinity of the separatrix of the 1 : 1 resonance. The location of third
bodies speeds up the eccentricity growth of high inclination orbits, causing
the objects starting at i ≈ 80◦ or i ≈ 120◦ to collide with the Earth. These
orbits are colored in black in Fig. 6.

The stable band up to large eccentricities for 80◦ < i < 110◦ contains orbits
with very slowly precessing line of nodes ( of a hundred up to hundreds of
years) and line of apsis (tens to a hundred years).

The picture at the right hand side in Fig. 6 is different, because there are
no Earth-grazing orbits with small initial eccentricities. In this case the right
ascension of the node h ≈ λ = 90◦, is not far from the stable equilibrium point
λ = 75◦. Moreover, the geometry is such that the line Sun-Moon crosses the
line of nodes of each orbit almost perpendicularly. The motion of the whole
population is much more regular; only polar orbits suffer higher perturbation
resulting in a faster eccentricity growth and in autocorrelation function values
in the range of 0.1 < A < 0.24.

The stable band up to large eccentricities for 80◦ < i < 110◦

4.4 Origin of chaotic orbits at the separatrix

As already mentioned in Breiter et al. (2005) chaoticity at the separatix results
from the interactions between the tesseral 1:1 resonance and perturbations
generated by the Moon and the Sun. We would like now to consider this
problem in detail in order to show the zones where one of these perturbations
predominates.

The geopotential tesseral terms with coefficients C2,2 and S2,2 cause librations
of the semi-major axis with a period of about 3 years. These terms give the
leading contribution to the evolution of orbits in the neighborhood of the
stable libration points. Higher order resonances, the Sun and the Moon do
not seriously influence the motion in this zone. One example of such orbits
is plotted in the Fig. 7a. This is the orbit with the initial semi-major axis
equal to a = 42166.25km, the eccentricity e = 0.4, the inclination i = 29◦, the
argument of perigee g = 100◦, and remaining Keplerian angles l = h = 0◦.
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b) a = 42176 km, e = 0.001, i = 29◦, l = g = h = 0◦
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c) a = 42190 km, e = 0.2, i = 29◦, h = 30◦, l = g = 0◦
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d) a = 42190.5 km, e = 0.2, i = 29◦, h = 30◦, l = g = 0◦

5 10 15 20 25
t

42180

42185

42190

42195

a 2,2 IACF=0.49

5 10 15 20 25
t

42170

42175

42180

42185

42190

42195

a 4,4 SP IACF=0.46

5 10 15 20 25
t

42150

42160

42170

42180

42190

42200
a 4,4 SPM IACF=0.21

e) a = 42166.25 km, e = 0.65, i = 29◦, g = 100◦, l = h = 0◦
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Fig. 7. Semi-major axis of four different orbits versus time. The perturbing forces
are labeled at the top of each plot. Numbers stands for the degree and order of
geopotential terms. S marks Sun’s, M – Moon’s and P – solar radiation pressure
perturbations.
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The initial geometry is such that the argument of perigee is very close to the
resonant angle such that the plot presents librations around the stable point
at λ = 75◦. This kind of a stable librational motion occurs for orbits with the
initial eccentricities less than e = 0.6.

Orbits at the separatrix present a diversity of the influence of individual forces.
There are some for which the main perturbing factor are the overtones of the
1 : 1 tesseral resonance. Figure 7b presents the orbit with the initial semi-major
axis a = 42176 km, e = 0.001, i = 29◦, and l = g = h = 0◦. The evolution of its
semi-major axis is defined by the third sectorial harmonics of the geopotential
C3,3 and S3,3. There also exist orbits for which the leading perturbing term
is the second overtone of the resonance, i.e. the fourth sectorial harmonic. In
both cases the Moon and Sun have no important influence. This type of orbits
mainly exist for small eccentricities, usually less than e = 0.2.

The evolution of the semi-major axis of orbits with higher eccentricities 0.1 <
e < 0.6 is governed mainly by the lunisolar perturbations. Interestingly, the
influence of the Moon and the Sun can stabilize the motion in some cases, but
usually it provokes changes of the regime of motion. In Fig. 7c, d two orbits
with their semi-major axes differing only by 0.5 km are presented. The main
cause of irregularity evolution of the semi-major axis for the orbit in Fig. 7c
is the Sun that lowers the value of the integrated autocorrelation function to
A = 0.12. The Moon smoothes the curve, stabilizes the motion, and increases
A to 0.15. The orbit with the semi-major axis higher by 0.5 km, plotted in
Fig. 7d, presents a counterexample: there the Moon destabilizes librational
motion.

Orbits with eccentricities in the range 0.6 < e < 0.75, especially those in the
dark gray regions of the Fig. 4 (right), are specific: the second tesseral harmon-
ics alone already cause the changes from the libration regime to the inner or
outer circulation regimes of motion. Other perturbing factors (higher tesseral
harmonics, the gravitational influence of the Moon or the Sun) additionally
influence the motion. An example of such an orbit is plotted in Fig. 7e.

5 Conclusions

The integrated autocorrelation function has proved to be a suitable to iden-
tify different types of orbits. Similarly to the GEO belt simulations results, we
found chaotic geosynchronous orbits on the separatrix layer of the 1:1 tesseral
resonance that results from the interaction with lunisolar perturbations. The
chaos manifests itself through the phenomenon of intermittency between libra-
tion and circulation regimes, already known for geostationary orbits. Another
source of chaotic or even Earth-grazing orbits is the interaction of the 1:1
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tesseral resonance with the Kozai-Lidov resonance. The latter generates a sig-
nificant growth of the eccentricity and provokes a broadening of the width of
the 1:1 tesseral separatrix, especially for orbits with initial eccentricities higher
than e = 0.2. There exist some groups of orbits that increase the eccentricity
to the value that the objects intersect the Earth’s surface in 27 years or less.
The geometry of mutual initial locations: Sun – Moon – satellite plays a key
role in this phenomenon and demands further research. The super-GEO space,
during the investigated period of 27 years, looks regular and quasi-periodic.
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