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Abstract. We propose a new, simple model to describe the gravity field of irregular, nonspherical
celestial bodies, like small moons or minor asteroids. The simple idea of Duboshin to use a material
straight segment for such bodies is extended by combining two perpendicular segments of different
lengths and masses. In typical situations, when the longest axis of the body coincides with one
segment, the remaining segment must have an imaginary length. The potential remains a real function
even if one segment is imaginary. The new model is confronted with the exact form of an ellipsoid’s
potential and with two alternative simple models for a two-axial and a three-axial ellipsoid.

Key words: potential, gravity field models, small bodies

1. Introduction

Space missions to comets and asteroids as well as discoveries of binary asteroids
have brought back and old problem: how to approximate efficiently the poten-
tial of irregular bodies? A standard model of a three-axial homogeneous ellipsoid
(Scheeres, 1994) is a solid answer to this question, but its mathematical form,
requiring elliptic integrals, is not computationally cheap and too complicated for
analytical considerations. At this point, we should specify explicitly, that the notion
of an ‘irregular body’ in the present paper is quite special: it refers to cigar-shaped,
but still ellipsoid-resembling objects. There exist much more irregular asteroids
like 4769 Castalia or 216 Kleopatra. In those cases, a polyhedron representation
developed by Werner and Scheeres (1997) is the best solution. The polyhedron
model, although robust and accurate, will not be discussed in the present paper: it
is just too sophisticated for the simple ‘irregular bodies’ considered here, because
it involves too many free parameters. A similar argument applies to other kinds of
many-parameters approximations like mascons.

Let us return to the ellipsoid approximation. Expanding the potential of an el-
lipsoid into the Legendre series (Balmino, 1994) provides a form well suited for
an analytical treatment, but the series are lengthy and the radius of their absolute
convergence is r̄ = √

a2 − c2, where a and c are the major and the least semi-axes.
Only for the ellipsoids with a/c�

√
2 the Legendre series may uniformly approx-

imate the potential down to the ellipsoid’s surface (Balmino, 1994).
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Trading accuracy for the convenience, some authors proposed simplified mod-
els. Scheeres and Hu (2001) considered a truncated Legendre expansion with C2,0

and C2,2 harmonics. Another simple model originating from the idea of Duboshin
(1959) has also been recently discussed (Riaguas et al., 1999, Riaguas, 2000); the
model replaces a body with a material straight segment aligned with its major
axis.

In the present paper we extend the model of Duboshin–Riaguas, combining two
perpendicular segments. Our double segment model is then compared with other
approximations of a three-axial ellipsoid.

2. The Double Segment Model

Let us start with a classical formula for the Duboshin–Riaguas (DR) potential.
According to Duboshin (1959) and Riaguas et al. (1999), an infinitely thin material
segment of length 2l and mass m, placed along the axis Ox, such that O coincides
with its centre of mass, has a potential

V1 = −µ

2l
ln

(
s + 2l

s − 2l

)
, (1)

where µ = k2m (with k – Gaussian gravity constant),

s =
√
r2 + 2xl + l2 +

√
r2 − 2xl + l2, (2)

and r = (x, y, z)T is the radius vector of a given point outside the segment. This
potential is intended to represent an elongated ellipsoid with the major axis 2a
aligned with the axis Ox and the centre of mass at O. Due to the axial symmetry
of the segment, the DR model should formally be restricted to spheroids with
a > b = c.

In order to break the symmetry of the DR model let us introduce a second
segment, perpendicular to the first one. After checking all three possible config-
urations, we have decided to combine the segments oriented along the axes Ox
and Oz.1 The segments have lengths 2l1 and 2l3, respectively, and their masses m1

andm3 can be different. Extending the formula of Equation (1), we can write down
the potential of the double segment as

V13 = −µ1

2l1
ln

(
s1 + 2l1
s1 − 2l1

)
− µ3

2l3
ln

(
s3 + 2l3
s3 − 2l3

)
, (3)

where

s1 =
√
r2 + 2xl1 + l21 +

√
r2 − 2xl1 + l21 , (4)

1This ‘13’ model has been selected because it led to the best results for cigar-shaped bodies like
the ones discussed in Section 4. A brief account of alternative combinations is given in Section 5.
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s3 =
√
r2 + 2zl3 + l23 +

√
r2 − 2zl3 + l23 , (5)

and µ1 = k2m1, µ3 = k2m3. The sum of the masses

m = m1 +m3, (6)

is assumed to be equal to the mass of the modelled ellipsoid.
The potential V13 is relatively simple and its gradient can be easily derived, so

that equations of motion for a negligible mass particle in the field of the double
segment take the form

ẍ = −∂V13

∂x
= −2µx

[
1 − κ

s1p1
+ κs3

p3(s
2
3 − 4l23)

]
, (7)

ÿ = −∂V13

∂y
= −2µy

[
(1 − κ)s1

p1(s
2
1 − 4l21)

+ κs3

p3(s
2
3 − 4l23)

]
, (8)

z̈ = −∂V13

∂z
= −2µz

[
(1 − κ)s1

p1(s
2
1 − 4l21)

+ κ

s3p3

]
, (9)

where

p1 =
√
r2 + 2xl1 + l21

√
r2 − 2xl1 + l21, (10)

p3 =
√
r2 + 2zl3 + l23

√
r2 − 2zl3 + l23, (11)

and a mass ratio parameter κ have been introduced

κ = m3

m
. (12)

Once the model is formulated, we may focus on the question how to determine its
parameters.

3. Parameters of the Model

Throughout this paper we discuss our model V13 as an approximation of a homo-
geneous ellipsoid’s potential Ve. The latter has a form (MacMillan, 1930)

Ve = −3

4
µ

∫ ∞

σ

Q(x, y, z, a, b, c, s) ds, (13)

Q = 1 − x2/(a2 + s)− y2/(b2 + s)− z2/(c2 + s)√
(a2 + s)(b2 + s)(c2 + s)

, (14)
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where σ is the positive root of Q = 0. Given a point (x, y, z) outside the ellipsoid,
the equation Q = 0, with s treated as the unknown, has only one positive real root,
thus σ is uniquely defined (MacMillan, 1930).

Aiming at giving the proper values to the three parameters l1, l3, and κ , we may
consider two different strategies. The most simple approach refers to the matching
of Legendre series expansions of V13 and Ve. Another, more tedious variant requires
the least squares adjustment on a grid of points covering the surface of the ellipsoid.

3.1. ASYMPTOTIC ADJUSTMENT

According to the results obtained by Duboshin (1959) for the potential V1, we can
write down the Legendre series for V13 in the following, simple form

V13 = −µ
r

∞∑
n=0

(1 − κ)P2n(x/r)l
2n
1 + κP2n(z/r)l

2n
3

(2n+ 1)r2n
, (15)

where Pν(ξ) stands for the degree ν Legendre polynomial of the variable ξ . The
leading terms of Equation (15) are

V13 ≈ −µ
r

[
1 − (1 − κ)l21 + κl23

6r2
+ ((1 − κ)l21x

2 + κl23z
2)

2r2

]
. (16)

Equation (16) can be compared with the leading terms of the classical spherical
harmonics representation of a potential of an arbitrary body contained within a
sphere of radius a

V ≈ −µ
r

[
1 − a2(C2,0 + 6C2,2)

2r2
+ 6a2C2,2x

2

r4
+ 3

2

a2(C2,0 + 2C2,2)z
2

r4

]
.

(17)

According to Balmino (1994), the coefficients for a homogeneous ellipsoid are

C2,0 = 2c2 − a2 − b2

10a2
, C2,2 = a2 − b2

20a2
, (18)

and thus we obtain

l1 = 2a

√
3C2,2

1 − κ
=

√
3(a2 − b2)

5(1 − κ)
, (19)

l3 = a

√
3C2,0 + 6C2,2

κ
=

√
3(c2 − b2)

5κ
. (20)

Equation (20) leads us to the important conclusion, that the length l3 has to be
assumed an imaginary quantity.
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3.2. REFORMULATION FOR THE IMAGINARY SEGMENT

Even with the segment of an imaginary length, the potential V13 remains real-
valued. Indeed, after substituting

l3 = iL3, (21)

we can compute V1,3 without using the complex arithmetics. After some elemen-
tary operations on complex conjugate quantities, we obtain

V13 = (1 − κ)V1(l1)− κµ

L3
arctan

(
2L3

s3

)
, (22)

where

s3 =
√

2(r2 − L2
3 + p3), (23)

p3 =
√
(r2 − L2

3)
2 + 4z2L2

3. (24)

The expressions for the partial derivatives of V13 with the imaginary l3 also remain
simple: we can still use Equations (7)–(9), provided the formulas (23) and (24) are
applied and l23 = −L2

3 is substituted.

3.3. LEAST SQUARES FIT

The asymptotic adjustment of the parameters is simple, but it also has two incon-
venient aspects: it is only indirectly related to the values of the gravity field close to
the surface of an ellipsoid, and it gives no hint about the appropriate value of κ . In
the alternative approach, we have considered a nonlinear least squares adjustment
of the parameters l1, L3, and κ on a grid of sample points covering the ellipsoid’s
surface. Due to the symmetries of the problem, we have distributed 330 of sample
points rn along one octant with x� 0, y� 0, and z� 0. The set of sample points
was generated as a sum three subsets

rn ∈ S1 ∪ S2 ∪ S3 (25)

with

S1 = {rj,q : (a cos(jδ) cos(qδ), b cos(jδ) sin(qδ), c sin(jδ))T},
S2 = {rj,q : (a sin(jδ), b cos(jδ) sin(qδ), c cos(jδ) cos(qδ))T},
S3 = {rj,q : (a cos(jδ) sin(qδ), b sin(jδ), c cos(jδ) cos(qδ))T},

where j = 0, . . . , 9, q = 0, . . . , 10 in all subsets and δ = π/20. This kind of
sampling covers the surface almost uniformly.

The χ2 merit function, defined as

χ2 = a2

µ

330∑
n=1

([Ve − V13]rn)
2, (26)
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has been evaluated on the grid and minimised by means of the
Levenberg–Marquardt algorithm. All computations have been performed using the
NonliearFit procedure of Mathematica (Adamchik et al., 1993).

4. Comparison of Models

In order to check the quality of the proposed improvement, we have performed
a comparison of three models with two test bodies: a spheroidal approximation
of the asteroid 243 Ida, and an ellipsoid representing the Mars satellite Phobos.
For both bodies we have checked the behaviour of various approximate potentials
along the Ox, Oy, and Oz axes. Throughout this section we will use the following
abbreviations: P2 – the Legendre expansion including the C2,0 and C2,2 harmonic
coefficients, DR – the single material segment model of Duboshin and Riaguas,
BB – the present model of two material segments. The P2 potential (Scheeres and
Hu, 2001) is given by Equation (17).

4.1. ELONGATED SPHEROID CASE

The first test case is an elongated spheroid, whose semi-axes ratios reflect the shape
of 243 Ida, namely

b

a
= c

a
= 0.39655. (27)

The semi-axes ratio for this body is significantly less than the limiting value
1/

√
2 ≈ 0.707 required for the uniform and absolute convergence of Legendre

series. One should expect that the P2 model with asymptotic parameters will obvi-
ously have a low accuracy in the vicinity of the ellipsoid. From the purely formal
standpoint, the (a/r)n Legendre series approximation is no longer valid for r � r̄ =√
a2 − c2 ≈ 0.92. However, we were interested in observing the behaviour of the

standard P2 model even inside the limit sphere r = r̄ . Discussing the truncated
Legendre series we meet no singularities when crossing the sphere of convergence
and thus, unlike the infinite series, the P2 model should only gradually degrade
with the decreasing values of r. Although the coefficients C2,0 and C2,2 no longer
have correct values, the question of how much can we improve P2 through the
adjustment of parameters is worth answering.

Table I provides all asymptotic and adjusted parameters of the three studied
models. Figure 1 presents the relative errors of the studied potentials with respect
to the ellipsoid potential Ve,

δU = 1 − U

Ve
, (28)

where U stands for the potential of the P2, DR, or BB model. The unit of length
along the horizontal axes is a.
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TABLE I

Parameters of the discussed models for two test bodiesa

243 Ida Phobos

Asymptotic Adjusted Asymptotic Adjusted

C2,0 for P2 −0.08427 −0.0436 (0.0020) −0.06712 −0.0612 (0.0008)

C2,2 for P2 0.04214 0.0218 (0.0007) 0.018 0.0166 (0.0003)

l1 for DR 0.71109 0.7073 (0.0018) 0.464758 0.5128 (0.0054)

l1 for BB 0.71109 0.7668 (0.0015) 0.65727 0.5981 (0.0056)

L3 for BB 0 0.074 (0.020) 0.43209 0.4760 (0.0073)

κ for BB 0 0.1360 (0.0029) 0.5 0.383 (0.012)

a Numbers in brackets are the standard errors.

Figure 1. Relative errors of various potential models as functions of distance along three axes for
asymptotic parameters (left) and the least squares adjusted parameters (right). The case of the 243
Ida spheroid.
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The three plots in the left column of Figure 1 present the errors of the studied
potentials with the asymptotic values of parameters. The values of C2,0 and C2,2

have been taken from Equation (18). Assuming κ = 0, we have computed the
length l1 from Equation (19). As it follows from Equation (20), the length l3 = 0
for the b = c case, and thus the DR and BB models are equivalent as far as a
spheroid with the Ox axial symmetry is concerned. Without an adjustment, the
DR/BB model is significantly better than P2, especially along the Oy and Oz
axes, where the distance can be smaller than

√
a2 − c2. Note, that DR/BB per-

form better even at the distance r > a, where the Legendre expansion is properly
defined.

The right column of Figure 1 shows how much can a model be improved due to
the adjustment of parameters. For the P2 model, the major part of the improvement
is spent on reducing the Oy and Oz errors; actually, it is achieved at the expense
of the accuracy along the Ox axis. As far as the DR model is concerned, there is
no substantial gain in its accuracy due to the adjustment of l1. The BB model gains
factor 2 in accuracy, but one may doubt if this gain is worth destroying the axial
symmetry through the introduction of a second segment. The quality of each model
has been reflected in the values of χ2 obtained at the end of the adjustments: 9.5
for P2, 0.24 for DR, and 0.04 for BB.

4.2. THREE-AXIAL ELLIPSOID CASE

The ellipsoid that represents Phobos has the axes ratios

b

a
= 0.8,

c

a
= 0.696. (29)

This time c/a is only slightly smaller than 1/
√

2 and from the formal standpoint the
Legendre series are still not valid close to the ellipsoid’s surface in polar regions.
The results of comparison are shown in Figure 2, arranged similarly to Figure 1.
For the asymptotic values of the parameters (Table I) the BB model is the best only
along theOz axis, whereas P2 is slightly better along theOx andOy axes. It is not
surprising, that P2 behaves better than the spheroidal DR. The effect of the adjust-
ment turns the BB model into the best one, because the high Oz accuracy with the
asymptotic constant can be traded to gain in both the remaining directions. On the
other hand, we observe a significant Ox error growth of P2 in order to improve the
Oy andOz accuracy. The values of χ2 imply the following arrangement of models
in this test case: DR is the worst, with χ2 = 0.24, then comes P2 with χ2 = 0.07,
and BB with the smallest χ2 = 0.006.

In order to give readers an idea of how the error of BB behaves in three dimen-
sions, Figure 3 provides two sections of the error level surfaces: in the Oxy plane
to the left and in the Oyz plane to the right.
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Figure 2. Relative errors of various potential models as functions of distance along three axes for
asymptotic parameters (left) and the least squares adjusted parameters (right). The case of the Phobos
ellipsoid.

Figure 3. The contours of equal relative errors of the adjusted two segments model for the Phobos
case.
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5. Conclusions

The model of two material segments seems to be an efficient tool, that is both
computationally cheap and fairly accurate. It can be applied in the problem of
orbital motion around asteroids and small moons, especially in the situations where
orbiting bodies approach the surface of a primary (e.g. the evolution of dust after
a meteoroid impact). The quality of the model with adjusted parameters is much
better visible from the global values of χ2 than from the plots along three sample
directions (Figures 1 and 2).

The paper has focused on the xz variant of the double segment model. We
have also tested two alternative cases: xy and yz. In the xy variant, where the
second segment is always real, we found that occasionally the Oy segment, can
be longer than the intermediate axis b of the approximated ellipsoid. This is quite
inconvenient and leads to singularities. Even in nonsingular cases, the accuracy of
approximation was worse than for the xz model. The yz model looks artificial at
the first glimpse; indeed it behaves much worse than the remaining two.

Although we have only discussed the case where the semi-axis a is always
greater than b, one may apply the model of two material segments in other situ-
ations. For example, a Jupiter family planet with a = b > c can be modelled by
assuming l1 = 0 and an imaginary value of l3.

Acknowledgements

The reviewers comments about the preliminary version of the paper were very
valuable and helped us much to improve the text. The work has been supported by
the Polish Committee of Research (KBN) grant 2 PO3D 007 18.

References

Adamchik, V., Adams, J., Bocharov, A., Boyland, P., Chandra, A., He, Y., Keiper, J., Marichev, O.,
Martin, E., Novak, J., Petkovsek, M., Skiena, S., Vardi, I., Wenzlow, A., Wickham-Jones, T. and
Withoff, D.: 1993, Guide to Standard Mathematica Packages. Wolfram Research, Champaign.

Balmino, G.: 1994, ‘Gravitational potential harmonics from the shape of an homogeneous body’.
Celest. Mech. Dyn. Astron. 60, 331–364.

Duboshin, G. N.: 1959, ‘On one particular case of the problem of the translational–rotational motion
of two bodies’. SvA 3, 154–165.

MacMillan, W. D.: 1930, The Theory of the Potential. McGraw-Hill, New York.
Riaguas, A.: 2000, ‘Dinámica Orbital Alrededor de Cuerpos Celestes con Forma Irregular’. PhD

thesis, Universidad de Zaragoza.
Riaguas, A., Elipe, A. and Lara, M.: 1999, ‘Periodic orbits around a massive straight segment’.

Celest. Mech. Dyn. Astron. 73, 169–178.
Scheeres, D. J.: 1994, ‘Dynamics about uniformly rotating triaxial ellipsoids: Application to

asteroids’. Icarus 121, 67–87.



DOUBLE MATERIAL SEGMENT 141

Scheeres, D. J. and Hu, W.: 2001, ‘Secular motion in a 2nd degree and order gravity field with no
rotation’. Celest. Mech. Dyn. Astron. 79, 183–200.

Werner, R. A. and Scheeres, D. J.: 1997, ‘Exterior gravitation of a polyhedron derived and compared
with harmonic and mascon gravitation representations of asteroid 4769 Castalia’. Celest. Mech.
Dyn. Astron. 65, 313–344.


