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Monograf́ıas de la Real Academia de Ciencias de Zaragoza. 22: 83–92, (2003).

Abstract

Large variety of resonance problems can be often reduced to a common, simple

model called a fundamental model of resonance. The paper presents four groups

of symmetric fundamental models known from literature. The pendulum-like First

Fundamental Model is free of parameters and very simple, but its application can

only be local – sufficiently far from the region where angle variable is undetermined.

The family of Second Fundamental Models is appropriate for d’Alembertian Hamil-

tonians, but it does not admit separatrix bifurcations. The Third Fundamental

Model of Shinkin is not satisfactory, and the separatrix bifurcations can be bet-

ter studied in the context of the Extended Fundamental Models proposed by the

author.

1 What is a fundamental model

Let us consider a Hamiltonian system with N degrees of freedom

Γ̇ = −∂H
∂γ

, γ̇ =
∂H
∂Γ

, (1)

where action–angle-like variables are Γ ∈ RN and γ ∈ TN . Our discussion will be re-

stricted to perturbed problems with

H(Γ, γ) = H0(Γ) + εH1(Γ, γ). (2)

A complete normalization (Γ, γ, H)→ (B, β, K), creating N action–angle pairs (Bk, βk)

and a new Hamiltonian K = K(B) is usually not possible. The main obstacle in the

normalization procedure is the appearance of a resonance. If only one resonance is present,

we can achieve a partial normalization, creating N − 1 action–angle pairs (Bk, βk) and

one “active” pair (Θ, ϑ).

For the purpose of this paper, a partially normalized Hamiltonian

K = A0(Θ) + εA1(Θ) cosmϑ. m = 1, 2, . . . (3)
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will be called a resonant Hamiltonian.1

Resonant Hamiltonians are various, depending on the form of A0(Θ) and A1(Θ), but

they share many common properties. If we ask about the common features of various

resonant Hamiltonians, we quite naturally arrive at the notion of fundamental models.

A fundamental model is a simplified resonant Hamiltonian with a minimum

possible number of parameters, but still providing a proper qualitative de-

scription of motion.

We need it to interpret observations or numerical simulations, to understand phenomena,

or to create an analytical theory for a resonant motion.

2 First Fundamental Model

Let us consider a one-harmonic resonant Hamiltonian (3). The standard procedure of

reducing K to a fundamental model will be presented here in full length. It consists of

three steps:

1. Translation of momentum and folding of angle,

2. Expansion of K in powers of the new momentum,

3. Reduction of parameters by means of a canonical scaling.

In order to perform the first step, we establish the approximate resonance condition

ϑ̇ ≈ A′0(Θ) = 0, (4)

by neglecting ε (throughout this paper, a prime stands for a partial derivative with respect

to Θ). Solving Eq. (4) for Θ, we obtain some value Θ0, that will serve as a new origin

for the momentum variable. A canonical transformation (ϑ, Θ) → (ϕ, Φ) that follows,

consists of translation and folding:

Θ = Θ0 + mΦ, ϑ =
ϕ

m
. (5)

Assuming a smallness of Φ, we may pass to step 2, expanding the Hamiltonian

K = A0(Θ0) + A′0(Θ0)mΦ +
m2

2
A′′0(Θ0) Φ2 + εA1(Θ0) cos(ϕ) + . . . , (6)

Rejecting a constant term A0(Θ0), recalling A′0(Θ0) = 0, and neglecting Φ3 terms, we

obtain a simplified resonant Hamiltonian

K∗ =
m2

2
A′′0(Θ0) Φ2 + εA1(Θ0) cos(ϕ), (7)

1Equation (3) reveals the important restriction in the subject of this paper: only “symmetric” (one

harmonic) fundamental models are to be presented.
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Figure 1: Phase flow of the First Fundamental Model.

The Hamiltonian K involves too many nonessential parameters, but we are free to modify

three parameters:

i) time unit t→ τ = c1 t,

ii) “length unit” Φ→ Ψ = c2 Φ,

iii) angle offset ϕ→ ψ = ϑ + k π, (recommended k = 0, 1 to preserve the symmetry).

The above transformations permit to get rid of two parameters. If we let

c2 = m

√∣∣∣∣ A′′0
A1 ε

∣∣∣∣, c1 = εA1, k = 1 if sgn(A′′0 A1 ε) = −1. (8)

we obtain a parameters-free First Fundamental Model

MFFM =
1

2
Ψ2 + cosψ. (9)

We easily recognize here the Hamiltonian of a simple pendulum, which means that we

know practically everything about its behaviour. The phase portrait of the pendulum

model is shown in Fig. 1a. We recognize the partition of the phase space into libration

and circulation zones. The “strength of resonance” is estimated by a “resonance width”

∆, measured from the line Ψ = 0 to the extreme point of a separatrix. Of course, the

resonance width of FFM is always ∆ =
√

2; in order to recover the resonance width in

original variables, we simply inverse the scaling:

∆Θ =

√
2

c2

=
1

m

√
2|εA1(Θ0)|
|A′′0(Θ0)|

= O(
√

ε). (10)

The First Fundamental Model has been extensively used in various resonance problems

at least since the first works of Laplace on Galilean satellites’ resonance. Its simplicity
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is remarkable, but in some cases it reveals important drawbacks. Observe, that FFM

implicitly assumes that Θ, ϑ are defined on an infinite cylinder (Θ ∈ R). In practice,

however, the values of the momentum are bounded, say Θ ∈ [a, b]. The question of

undetermined angle ϑ when Θ = a or Θ = b becomes completely neglected in FFM. To

state it briefly: FFM is not d’Alembertian.

3 Second Fundamental Model for d’Alembertian Hamiltonians

The resonant Hamiltonian (3) is d’Alembertian if its amplitudes admit a particular form

of expansion in powers of Θ

A0(Θ) = a1 Θ + a2 Θ2 + a3Θ
3 + . . . , (11)

A1(Θ) = b1Θ
m/2 + b2 Θ(m+1)/2 + . . . (12)

An equivalent definition states that K is d’Alembertian if it is analytic in Poincaré vari-

ables x,X

x =
√

2 Θ sinϑ, X =
√

2 Θ cosϑ. (13)

Observing that Θ = 1
2
(x2 + X2), we easily explain the special form of amplitudes in (11)

and (12).

If the resonant Hamiltonian K is d’Alembertian, the reduction to a fundamental model

must differ from the procedure described in the previous section at one important point:

we skip the passage through (Φ, ϕ) and go directly to expansion around Θ = 0 followed

by the scaling. The two operations involved in defining Φ and ϕ are now prohibited. We

can not translate the momentum, because this would destroy the form of expansion (12).

Forbidding the folding is less evident, but equally important; it can be explained by the

behaviour of an exemplary expression F

F = 2 Θ cos 2ϑ = X2 − x2, (14)

All derivatives ∂kF
∂Xk

∣∣∣
0

are regular at the origin X = x = 0. But if we apply a folding

transformation ϕ = 2ϑ, Φ = Θ/2, the expression becomes

F = 4 Φ cosϕ = 2X
√

(X2 + x2), (15)

and we see, that F is no longer analytic at the origin, because ∂3F
∂X3

∣∣∣
0

=∞.

It is quite an instructive exercise to write down the First Fundamental Model in terms

of Poincaré variables. First, we notice that the variables like x =
√

2 Ψ sinψ are of no

use, because they imply Ψ ≥ 0, which is not the case. We are forced to translate the

origin of momentum, introducing some new momentum Ψ� = Ψ−A; for obvious reasons,

the constant A must be greater than ∆. Using Poincaré variables

y =
√

2 (Ψ− A) sinψ, Y =
√

2 (Ψ− A) cosψ, (16)
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we rewriteMFFM as

M�
FFM =

1

2

(
A +

1

2
(y2 + Y 2)

)2

+
Y√

y2 + Y 2
. (17)

The first derivative of the last term of Eq. (17) with respect to y is singular at the origin

y = Y = 0, and thus the Hamiltonian M�
FFM1 is not analytic. Figure 1b presents the

Hamiltonian (17) for A = 4; the exclusion of the origin has been marked by shading one

of the inner contours. As a matter of fact, it is not sufficient to exclude only the point

y = Y = 0: we have to exclude the entire contour line M�
FFM1 = const passing through

the origin, and a whole area bounded by this curve.

Let us return to the expansion of K. If the translation to the resonance value of

momentum is prohibited, we should directly expand K around Θ0 = 0, that results in the

simplified resonant Hamiltonian

K∗(Θ, ϑ) ≈ α2 Θ2 + α1 Θ + εβ Θm/2 cos(mϑ). (18)

Reducing two parameters by means of the scaling, we obtain the Second Fundamental

Model (SFM), or rather a family of models SFMm

MSFMm = Ψ2 + γ Ψ + (2 Ψ)m/2 cosmψ. (19)

Although the Hamiltonians like (18) were studied first by Andoyer [1] and then by Jef-

ferys [7], but it was only in 1980’s when Henrard and Lemaitre reduced the number of

parameters obtaining the fundamental model (19) [6, 8].

In contrast to the First Fundamental Model, the members of the family SFMm behave

differently for different values of the angle multiplier m, and for each m the Hamiltonian

depends on parameter γ. The dependence on γ gives rise to various bifurcations that add

a special flavor to the study of apparently simple one degree of freedom systems. As an

illustration of this statement, let us visit two most commonly applied cases: m = 1 and

m = 2 (the first and second order resonances). A review of higher order SFMm models

can be found in [9].

3.1 SFM1

Henrard and Lemaitre [6] studied the SFM1 Hamiltonian in the form

M1 = Ψ2 − 3(δ + 1) Ψ− 2
√

2Ψ cosψ = −3

2
(δ + 1)(x2 + X2) +

1

4
(x2 + X2)2 − 2X. (20)

A slight difference with respect to Eq. (19), consisting in the use of δ and an extra factor 2

in the amplitude of cosψ, result from the esthetic principles only: The critical value of the

parameter δ inM1 becomes δ = 0 according to this choice. Looking at the sample phase
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Figure 2: Two generic phase portraits of SFM1 for δ < 0 (a) and δ > 0 (b). For δ � 1

the phase flow becomes similar to FFM (c).
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Figure 3: Generic phase portraits of SFM2 for δ < −1 (a), −1 < δ < 0 (b), and δ > 0 (c).

portraits of SFM1 (Fig. 2), we first find a nonresonant evolution for δ < 0. Although

some trajectories may reveal libration, when followed in polar variables (ψ, Ψ), we should

not name them resonant, because there are no unstable manifolds (separatrices) among

the contour lines of M1. It is a tangent bifurcation at δ = 0 that gives rise to the really

resonant motion for δ > 0. It should be observed, that in the limit δ � 1 the libration

zone is sufficiently distant from the origin, that we may locally approximateM1 by means

of the First Fundamental Model.

3.2 SFM2

Lemaitre [8] studied the cases of m = 2, m = 3 and m = 4. Her SFM2 Hamiltonian is

M2 = 2 Ψ2− (2δ + 1) Ψ + Ψ cos 2ψ = −(2δ + 1)(x2 + X2) + (x2 + X2)2 + X2− x2. (21)

Figure 3 provides three generic phase portraits of M2. The resonant cases appear only

for δ > −1, after a pitchfork bifurcation at δ = −1. The second pitchfork bifurcation

occurs at δ = 0, and thus we may have up to 5 critical points in the system. If δ � 1,

we may locally perform the translation/folding transformation, that reduces SFM2 to the

pendulum-like FFM.
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4 Third Fundamental Model

A large number of resonances in celestial mechanics, involving asteroids, artificial satel-

lites, planetary moons etc., can be well reduced to the SFMm. The Second Fundamental

Model admits most of classical critical points bifurcations that appear in one degree of

freedom Hamiltonian systems. Its application, however, is restricted to the systems that

do not admit separatrix bifurcations (known also as saddle connections [2]) that appear in

some problems like semi-secular resonances of artificial satellites [4] or orbital resonances

of asteroids [10].

Looking for a better suited fundamental model, Shinkin [10] proposed a Hamiltonian,

that he named the Third Fundamental Model

MIII =
1

2
Ψ2 + α

4∏
k=1

(Ψ + βk)
jk/2 cosψ, (22)

where j1 + j2 + j3 + j4 ≤ m. As we see, his leading idea was to complicate the amplitude

of the periodic term. Note, however, that Shinkin’s MIII was derived similarly to the

First Fundamental Model: the resonant angle was folded and thus the Hamiltonian is

not d’Alembertian in a general case. It also contains too many parameters as for a

fundamental model.

5 Extended Fundamental Model

Looking for a fundamental model capable of representing separatrix bifurcations, we can

adopt a simple strategy, different from the Shinkin’s idea in one essential point: we follow

the same way as for the SFM, but we retain a cubic term Θ3 in the simplified resonant

Hamiltonian (18)

K∗ = a3Θ
3 + a2Θ

2 + a1Θ + b (2Θ)m/2 cosmϑ. (23)

The reduction of two parameters leads to the family of Extended Fundamental Models

EFMm [4, 5]

MEFMm = Ψ3 +
1

2
uΨ2 + vΨ + (2Ψ)m/2 cosmψ. (24)

In order to allow a comparison between SFMm and EFMm, let us briefly inspect two

cases: m = 1 and m = 2.

5.1 EFM1

The Extended Fundamental Model for first order resonance has a Hamiltonian

ME1 = Ψ3 +
1

2
uΨ2 + vΨ +

√
2Ψ cosψ =

=
1

8
(x2 + X2)3 +

1

8
u (x2 + X2)2 + v(x2 + X2) + X. (25)
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Figure 4: Generic phase portraits of EFM1 and possible transitions.

Its behaviour was studied in [5]. The parametric plane (u, v) is divided by bifurcation

lines f(v, u) = 0 into 5 sectors with qualitatively distinct phase portraits (the latter are

shown in Fig. 4). Similarly to SFM1, we find tangent bifurcations, but they generate

more critical points: up to 5 in EFM1, compared to 3 in SFM1. What is more important,

if two unstable points have the same value of cME1, the separatrices asymptotic to these

points merge. This separatrix bifurcation changes qualitatively the phase portrait, but it

could not be detected by means of usual considerations based on the variational equations

in the vicinity of critical points.

The reduction of EFM1 to previous models is locally possible, provided the two libra-

tion zones are sufficiently distant one from another (reduction to SFM1) and from the

axes origin (reduction to FFM).

5.2 EFM2

The results for the second order EFM2 have not been published yet, but the lunisolar

resonance Hamiltonian discussed in [3] can be easily reduced to the general form

ME2 = Ψ3 +
1

2
uΨ2 + vΨ + 2Ψ cos 2ψ =

=
1

8
(x2 + X2)3 +

1

8
u (x2 + X2)2 + v(x2 + X2) + X2 − x2. (26)

The bifurcation sequence presented in [3] is actually the one of EFM2 (Fig. 5). Compared

to SFM2, the model not only admits more critical points (up to 9) but also it involves

both tangent and pitchfork bifurcations, not to mention the separatrix bifurcations. The

phase portaits are surprisingly rich as for an apparently simple Hamiltonian (26).
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Figure 5: Generic phase portraits of EFM2 and possible transitions.

6 Conclusions

Fundamental models play a crucial role in understanding the dynamics of resonant sys-

tems. They help us to understand the results of numerical simulations. They can be used

to predict the onset of chaos due to various phenomena like the resonance overlap or the

appearance of saddle connections. Recognizing the fundamental model appropriate for a

given problem saves quite a lot of work that otherwise would be spent on studying well

known and widespread patterns.

References

[1] Andoyer, H.: 1903, ‘Contribution a la théorie des petites planétes dont le moyen
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