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Abstract

For a family of simulated geostationary, geosynchronous and super-geostationary orbits we compute the indicator called

MEGNO in order to find out which orbits are chaotic and the timescale of their exponential divergence. A symplectic integrator

of the Wisdom–Holman type was used for this purpose, with an integration span of 40 years. The results indicate that chaotic orbits

exist only at the separatrix between geostationary libration and circulation and that they are relatively rare. The super-geostationary

region seems to be entirely regular and quasi-periodic on the timescale of few decades.

� 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

Keywords: Satellite orbits; Artificial Earth satellites; Space debris
1. Introduction

The question of the geosynchronous Earth orbits
(GEO) dynamics is of particular interest from both the-

oretical and practical points of view. Of course, the same

concerns the super-GEO objects that are mostly the dis-

posed satellites from the geostationary ring. According

to Flury et al. (2000), the geostationary ring is a segment

of a spherical shell spanning around the equatorial orbit

with the reference radius A = 42,164 km. The segment is

about 150-km thick in the radial direction, and ± 15�
wide in latitude. The recommended super-GEO orbits

should have perigees higher than A + 235 km plus a cor-

rection depending on their area-to-mass ratio.

Great effort has been made to solve the problem of

possible re-entry of the super-GEO objects into the geo-

stationary belt, that might increase the collision risk

(Yasaka et al., 1999; Pardini and Anselmo, 2001;
0273-1177/$30 � 2005 COSPAR. Published by Elsevier Ltd. All rights reser
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Wytrzyszczak, 2004). In the present paper, we raise a

slightly different, although equally important question:

are the GEO and super-GEO objects predictable? How
fast does some uncertainty of their position and velocity

grow in time? For this purpose we use the modern chao-

ticity indicator called MEGNO (mean exponential

growth factor of nearby orbits), introduced by Cincotta

et al. (2003). Symplectic numerical integration of the sat-

ellites motion combined with the evolution of related

tangent maps allowed us to generate the MEGNO maps

that show the regularity or chaoticity of motion for a
wide range of initial conditions.
2. The model and numerical integration method

We studied the motion of a presumably spherical sa-

tellite under the action of the Earth�s gravity field, luni-

solar perturbations and direct radiation pressure. The
geopotential included spherical harmonics up to degree

and order 4 of the EGM96 model (Lemoine et al.,

1987) Positions of the Sun and the Moon required for
ved.
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the evaluation of the perturbing forces were computed

according to the simplified formulas from The Astro-

nomical Almanac (2000, pp. C1 and D46). For the pur-

pose of the solar radiation force evaluation, we have

assumed the satellites to be spherical objects with an

area-to-mass ratio 0.005 m2 kg�1 and a reflectivity coef-
ficient 1.14. The influence of the shadow function was

neglected in our simulation.

Canonical equations of motion were considered in

the geocentric reference frame rotating with the Earth.

The Hamiltonian function H of the problem was parti-

tioned into the leading part H0, describing the Keple-

rian problem in the rotating reference frame, and the

perturbing part H1, consisting of the contributions
due to the perturbing part of the geopotential V¯, luni-

solar terms Vx + Vm, and the radiation pressure poten-

tial Vrp. So we have

H ¼ H0 þH1; ð1Þ

H0 ¼
~R

2

2
� X� xY � yXð Þ � l

r
; ð2Þ

H1 ¼ V �ð~rÞ þ V �ð~r; tÞ þ V mð~r; tÞ þ V rpð~r; tÞ; ð3Þ
where X¯ is the Earth rotation rate, and l is the geocen-

tric gravity parameter. The evolution of coordinates
~r ¼ ðx; y; zÞ and of their conjugate momenta
~R ¼ ðX ; Y ; ZÞT is described by the canonical equations

of motion

d~r
dt

¼ oH

o~R
;

d~R
dt

¼ � oH

o~r
: ð4Þ

In order to integrate the equations of motion (4), the

4th order symplectic integrator of Yoshida (1993) was

applied with the Wisdom–Holman type partition of

the Hamiltonian described above (Wisdom and Hol-

man, 1991). This kind of integrator is necessarily a

fixed-step procedure and we have assumed it to be about

1/20 of the orbital period. This value was sufficient for

small eccentricity orbits. Some orbits open to the possi-
bility of a significant eccentricity growth were also veri-

fied using a smaller stepsize.
3. The MEGNO definition and computation

The fundamental property of a chaotic orbit is the

exponential growth of the infinitesimal position/momen-

tum error~d. With an initial value~d0 of such a vector we

have, asymptotically, d � d0 exp rt, where r is the larg-

est Lyapunov characteristic exponent (LCE). Thus, an

associated quantity TL = r�1, the Lyapunov time, tells
us how much time a small error requires to increase

by a factor exp(1) � 2.72. By rule of thumb, motion is

considered unpredictable on a timescale longer than

10 TL.
Briefly, the MEGNO indicator Y is a time-weighted

LCE (Cincotta et al., 2003)

Y ðtÞ ¼ 1

t

Z t

0

2

t0

Z t0

0

_d
d
t00dt00

 !
dt0: ð5Þ

The behavior of MEGNO depends on the type of
motion:

(1) for a chaotic orbit it asymptotically tends to

Y � r
2
t;

(2) for a non-chaotic, quasi-periodic orbit Y! 2;

(3) for stable, isochronous periodic orbits Y! 0.

A definite advantage of MEGNO is its fast conver-
gence, at least 10 times better than for a numerically esti-

mated LCE. However, computing MEGNO over a

relatively short time interval reveals the differences be-

tween the convergence rate of Y in various domains of

the phase space. According to our experience, trajecto-

ries close to stable periodic orbits will have Y < 2 (often

negative), and trajectories in the neighborhood of unsta-

ble periodic orbits will have 2 < Y[ 3.
In order to evaluate the MEGNO value of a given sa-

tellite orbit, we have treated the symplectic integrator as

a discrete variable mapping. For each integrator step, an

associated tangent map was followed, in order to obtain

the evolution of the initial error vector ~d0. The �MEG-

NO for maps� algorithm was applied as given by Cin-

cotta et al. (2003). For the Keplerian part of the

Wisdom–Holman scheme, we used the tangent map of
Mikkola and Innanen (1999). The tangent maps of the

perturbations �momentum kicks� were evaluated accord-

ing to the Hessian matrices of the respective potentials.

An important remark concerns the choice of~d0: con-
trary to Goździewski et al. (2001), who emphasized the

random choice of this vector, we maintained the same

initial value of ~d0 for all sampled initial conditions of
~r;~R. This results in some artificially created zones of
low MEGNO values due to the proximity of ~d0 to the

minimum Lyapunov exponent direction. However, such

patterns can be easily identified and they practically do

not influence the detection of chaotic orbits.

For the purpose of our study, we decided to simulate

orbits over 40 years of motion, i.e. more than 104 of fun-

damental 24h periods. This is a relatively short time, but

the necessity of evaluating tangent maps together with
the trajectory, increases the computational cost. The

simulation of a 40 years interval with a time step

0.05 d takes from 10 s (geopotential only) to 15 s (all

perturbations) on a 2 GHz PC. But, according to our

experiments, this expense pays off because replacing tan-

gent maps with a ‘‘shadow trajectory’’ (known also as

‘‘two particles’’) approach degrades the accuracy and re-

quires longer integration intervals to be followed. Fig. 1
shows the behavior of Y(t) over 400 years for three



Fig. 1. MEGNO as a function of time for three exemplary orbits.

Fig. 2. MEGNO as a function of initial longitude and semi-major axis.

All perturbing effects excluded, except for the second degree

harmonics.
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exemplary orbits. The first one (top) is clearly quasi-

periodic and it had Y(t1) = 2.001 after t1 = 40 year; we

can see, that the MEGNO converges to Y = 2. The sec-

ond example (middle) shows an orbit with a low

Y(t1) = �0.57; it converges to Y = 2 but more slowly

than the previous one, and with Y < 2 all the time.

The last example (bottom) had Y(t1) = 3.38; the orbits
of this kind are problematic and there is no rule their fu-

ture MEGNO obeys. Sometimes their Y grows system-

atically, but sometimes it oscillates close to 3 or 4 even

over 4000 years. Even when they prove chaotic, their

Lyapunov times are long, so we classify them as �mildly

chaotic�.
4. Results

4.1. Longitude – semi-major axis map

Our first study considered a family of orbits with all

initial elements fixed, but with various values of the ini-

tial semi-major axis a and of the initial right ascension of

the ascending node X. The remaining elements at the ini-
tial epoch t0 = JD2000 + 97d, were e = 0.0003 for the

eccentricity, i = 0 for the inclination,M = 0 for the mean

anomaly, and x = 0 for the argument of perigee. With

these initial elements, we had the initial mean longitude

equal to the initial right ascension of the ascending node

X = k, hence we are going to speak about the map of

MEGNO values on the (k, a) parametric plane. This

map is of primary importance, because the 1:1 tesseral
resonance, that is the central feature of the GEO dynam-

ics, has k as a critical angle and L ¼ ffiffiffiffiffiffi
la

p
as its conjugate

momentum.
Fig. 2 presents the values of MEGNO obtained after

symplectic integration on the interval of about 40 years.

More precisely, we followed 14,400 orbital periods com-

puted from the initial semi-major axes according to

Kepler�s third law. All perturbing effects were turned
off, save for the second degree harmonics of the geopo-

tential, with the C2,0, C2,2, and S2,2 coefficients. The

mean longitude grid was 1� and the semi-major axis grid

was 1 km, spanning the A ± 40 km range. Inspecting

Fig. 2, we notice the well known pendulum-like pattern

related to the libration zones of the GEO resonance.

Two stable stationary points are visible at longitudes

of about 75� and 255�, as well two unstable points at
165� and 345�. There are two kinds of low MEGNO

artifacts related to the use of a common~d0 for all initial
conditions: thin vertical stripes at k = 38� and k = 218�,
tadpole shaped pairs with �heads� close to the stable sta-

tionary points and �tails� originating at the unstable

points. Apart from these features, most of the paramet-

ric plane is dominated by quasi-periodic orbits with

Y � 2. Only the separatrix contains irregularly distrib-
uted orbits with 2 < Y < 4 that mark the presence of

unstable periodic orbits. The overall picture can be qual-

ified as practically regular.

Adding more harmonics of the geopotential we affect

the symmetry of the libration zones, but MEGNO at the

separatrices does not exceed 4.2, even after including the

radiation pressure effects. It is the addition of lunisolar

perturbations that leads to the appearance of clearly
chaotic orbits. Fig. 3 presents the values of MEGNO

after 40 years with the mean longitude grid of 2� and

the semi-major axis grid of 1 km. The initial semi-major

axes extend from below the GEO radius, 42,116 km up

to the super-GEO disposal orbits zone, at 42,416 km.

The values of MEGNO among the 54,000 sample orbits

were �1.39 < Y < 8.04, but the shades in Fig. 3 are

clipped to the 0 6 Y 6 6 range in order to enhance
details.



Fig. 3. MEGNO as a function of initial longitude and semi-major axis.

Fig. 5. Osculating semi-major axes of two exemplary nearby orbits.

Fig. 6. Mean longitude for the orbits presented in Fig. 5.
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Due to the lunisolar perturbations, the separatrix be-
tween the inner circulation, libration, and outer circula-

tion regions is thick and contains irregularly spaced

chaotic orbits. A blow-up of the region close to the

unstable geostationary point is shown in Fig. 4.

Once the chaotic orbits in our problem have been

spotted, the question should be raised what do they look

like? The answer can be found in Figs. 5 and 6. We have

chosen an orbit (‘‘orbit 1’’) with a = 42,158.255 km and
Fig. 4. The blow-up of Fig. 3 close to the unstable geostationary point.
k = X = 176�, with the MEGNO value close to 5. Such

an orbit should be mildly chaotic. We also simulated a

nearby orbit (‘‘orbit 2’’) with a slightly different initial

semi-major axis a = 42,158.254 km (and the same values
of remaining elements), in order to see the sensitivity of

motion with respect to the initial conditions.

Fig. 5 presents the evolution of the osculating semi-

major axes of both orbits on the extended interval of

120 years. The most important chaos-related feature is

the phenomenon of intermittency: both orbits swap be-

tween different regimes of motion. Let us use the labels

L, I, O for the libration, inner circulation (below the
GEO radius), and outer circulation (above the GEO ra-

dius), respectively. Then, orbit 1 takes the itinerary

(ILIIIII)ILLIIIIILLLL,

whereas orbit 2 follows

(ILIIIIL)LLOOOOOLLL.

The brackets mark the first 40 years of motion; for

this interval we plot the mean longitude k of both orbits

in Fig. 6. As we see, due to different itineraries of the two

nearby orbits, the difference between the two longitudes

reached almost 180�. In a purely Keplerian motion or

for a non-chaotic perturbed orbit, such separation in k
due to the semi-major axes difference of 1 m would be

attained in 4 · 104 years. The Lyapunov time estimated

from the MEGNO is indeed few years and our results

agree with the rule of thumb given in Section 3.



Fig. 7. MEGNO as a function of initial inclination and semi-major

axis.
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4.2. Inclination, eccentricity and semi-major axis

Fig. 7 presents the MEGNO map that we obtained

scanning a grid of initial inclinations (0 6 I 6 180�)
and major semi-major axes (42,116 6 a 6 42,416 km).

The grid resolution was 2� in I and 1.5 km in a. For

all orbits we set e = 0.0003 and M = x = X = 0. The

highest value of MEGNO in this sample was Y = 6.1

on the interval of 14,400 orbital periods. As seen in

Fig. 7, chaotic orbits are quite few, and all are located
at almost geosynchronous values of a. On the other

hand, there is no preference with respect to the

inclinations.

Similarly to the (I, a) plot, we also investigated the

(e, a) map with small eccentricities (e 6 0.1) of an equa-

torial orbit. No unexpected phenomena were detected:

the zone of a close to A created a stripe of low MEGNO

values with occasional chaotic orbits. No significant
dependence on e was seen. The maximum MEGNO

we observed was 8.6, but still chaotic orbits were rather

exceptional.
5. Conclusions

Our computations of MEGNO indicate that there ex-

ist chaotic orbits in the geostationary region, with the

Lyapunov times short enough to make a 40 years predic-

tion impossible. Such orbits however are rare and
appear only close to the separatrix between the geosta-

tionary libration and circulation modes. The chaos is

rather mild, manifested through the phenomenon of

intermittency between different libration and circulation

regimes. The underlying mechanism is the interaction of

lunisolar perturbations with the 1:1 tesseral resonance,
resulting in a small thickness of the separatrix; there

are no signs of overlapping resonances that might intro-

duce a wide chaotic zone (Lichtenberg and Lieberman,

1983). All the super-GEO orbits that we simulated are

regular quasi-periodic, as far as small inclinations or

eccentricities are concerned.
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