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Abstract. A Lie-Poisson integrator with Wisdom-Holman type splitting is constructed for the problem of a rigid body and a
sphere (the Kinoshita problem). The algorithm propagates not only the position, momentum and angular momentum vector of
the system, but also the tangent vector of ‘infinitesimal displacements’. The latter allow to evaluate the maximum Lyapunov
exponent or the MEGNO indicator of Cincotta and Simó. Three exemplary cases are studied: the motion of Hyperion, a fictitious
binary asteroid with Hyperion as one of the components, and the binary asteroid 90 Antiope. In all cases the attitude instability
of the rotation state with spin vector normal to an equatorial orbit influences stability of the system at lower rotation rates. The
MEGNO maps with variations restricted to the orbital plane for position and momentum, and to the orbit normal direction for
the angular momentum resemble usual Poincaré sections. But if no restriction is imposed on the variations, some stable zones
turn into highly chaotic regions, often retaining the shape of their boundaries.
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1. Introduction

The dynamics of a system consisting of a triaxial rigid body
and a homogeneous sphere has a particular importance for ce-
lestial mechanics. The problem is nonintegrable in general, but
still much simpler than the general problem of two rigid bod-
ies and may serve as the first approximation when one of the
bodies is almost spherical. Probably the most comprehensive
source about the general problem of a rigid body and a sphere
in the absence of resonances is still the work due to Kinoshita
(1972). The author was obviously not the first one to discuss the
problem, but he provided a first order analytical theory of or-
bital and rotational motion in the system. He also demonstrated
that – without any approximation – an appropriate choice of the
reference frame leads to the constant separation (180◦) between
the ascending nodes of orbit and equator. We hape that naming
the ‘triaxial body + sphere’ problem after H. Kinoshita is a jus-
tified abbreviation to be used in this paper and it should not
be taken as a disrespect to other authors who worked on this
problem.

There are two satellite-type limit cases of the Kinoshita
problem: when the mass of the sphere (ms) is negligibly small,
the system represents the motion of a point mass satellite
around a freely rotating planet with the mass me � ms, but in
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the opposite case, when me � ms, one obtains the problem of a
rotating satellite of a spherical planet. Both problems are quite
common in the natural and artificial satellites studies and were
extensively studied, but the discovery of binary asteroids calls
for more interest in studying the intermediate cases that fall
half way between the two extremes. Indeed, a significant part
of binary systems, like 90 Antiope or 617 Patroclus, have com-
ponents with comparable masses (Merline et al. 2002,Tab. 2).

Even in the triaxial satellite limit case, however, one should
observe that most of the studies were performed for the planar
case, with the triaxial body rotating around the axis of the max-
imum moment of inertia normal to the orbital plane. This case
is perfectly suited for the application of Poincaré surface of sec-
tion method. On the other hand, Wisdom et al. (1984) pointed
out the attitude instability phenomenon that makes such restric-
tion unjustified in some situations. One of the objectives of the
present paper is to compare the results obtained with and with-
out the planar restriction.

The present paper actually describes our research on a spe-
cial case of the Kinoshita problem: the triaxial body is an el-
lipsoid. The ellipsoid as a source of the gravity field is ap-
proximated by a model of two material segments and a cen-
tral mass – a modification of the two segments model intro-
duced by Bartczak & Breiter (2003). Sections 2 and 3 present
the formalism and a Lie-Poisson numerical integration algo-
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rithm for the Kinoshita problem. The algorithm has many
common points with the work of Touma & Wisdom (1994)
hence we do not repeat their discussion of the conservation
of Lie-Poisson structure and of approximate conservation of
the Hamiltonian. We only recall that Lie-Poisson integrators
integrate Hamiltonian equations of the Lie-Poisson type in
a same manner that symplectic integrators numerically solve
canonical Hamiltonian equations. In Section 4 we extend the
integrator, providing the algorithm to propagate the associ-
ated tangent vector. For the Keplerian motion we incorporate
the formulation of Mikkola & Innanen (1999) and we add the
recipe for the rotational component of the problem. Tangent
maps allow the application of the MEGNO (Mean Exponential
Growth factor of Nearby Orbits) stability indicator invented
by Cincotta & Simó (2000). Section 5 recalls basic facts about
MEGNO and its relation to the maximum Lyapunov exponent.
MEGNO is a reliable tool originally developed for the galactic
dynamics studies (Cincotta & Simó 2000; Cincotta et al. 2003)
but then successfully transplanted to the dynamics of plan-
etary systems (Goździewski et al. 2001) and artificial satel-
lite problem (Breiter et al. 2005). Goździewski (2003) origi-
nated combinig the MEGNO computation with symplectic in-
tegration of equations of motion. In the rotational dynamics
problems, the MEGNO indicator was successfully applied by
Pavlov & Maciejewski (2003) who studied the 3:2 spin-orbit
coupling of Mercury.

Finally, Sect. 6 presents the MEGNO analysis for three
sample problems. First we revisit the classical problem of the
Saturn’s moon Hyperion. This is an example of the Kinoshita
problem in the triaxial satellite limit. Two following examples
treat the comparable masses case of the Kinoshita problem in-
tended to shed light on the dynamics of binary asteroids. The
rigid body and a sphere model was already used in this context
as a first approximation (Scheeres 2002). In order to provide a
direct comparison with the satellite limit, we first study a ficti-
tious system composed of Hyperion and a spherical companion
whose mass is only 5 time grater than Hyperion. Then we focus
on a real problem of the binary system 90 Antiope.

2. Equations of motion

We study the evolution of 9 variables

ζ = (R1,R2,R3, P1, P2, P3,G1,G2,G3)T , (1)

describing the motion of a spherical mass ms with respect to a
homogeneous ellipsoid with the mass me. The ellipsoid has the
matrix of inertia

I =




A 0 0
0 B 0
0 0 C



=

me

5




b2 + c2 0 0
0 a2 + c2 0
0 0 a2 + b2



, (2)

and its momentum vector G is expressed in the body frame.
The origin O of the body frame is fixed at the ellipsoid’s centre
of mass, whereas the orthogonal axes OX1, OX2 and OX3 are
directed towards the smallest, the medium and the maximum
inertia axes, forming a right-handed system. Position R and or-
bital momentum P of the sphere are also reckoned in the body
frame.

The reduced mass m is a function of the ellipsoid mass me

and the sphere mass ms

m =
me ms

me + ms
. (3)

Using an appropriate Lie-Poisson bracket (Olver 1993;
Maciejewski 1996), equations of motion can be derived from
the Hamiltonian function

H(ζ) =
P2

2 m
+

1
2

GTI−1G + V(R), (4)

and read

ζ̇ = J
∂H
∂ζ
. (5)

The Lie-Poisson structure matrix J is

J =




0 E Q(R)
−E 0 Q(P)

Q(R) Q(P) Q(G)



, (6)

where 0 and E are 3×3 zero and unit matrices respectively. The
vector product matrix Q is defined as

Q(F) =




0 −F3 F2

F3 0 −F1

−F2 F1 0



, (7)

for any vector F. Using Q we can express the vector product as
a matrix product

A × B = Q(A) B.

With the Lie-Poisson bracket { f , g} of two arbitrary functions
f , g

{ f , g} =
(
∂ f
∂ζ

)T

J
∂g
∂ζ
, (8)

equations of motion (5) become simply

ζ̇ = {ζ,H}. (9)

A similar formalism has been used by Touma & Wisdom
(1994). Our first objective is to derive a numerical integration
algorithm that conserves the Lie-Poisson bracket (8).

3. Integration algorithm

In order to integrate numerically Eqs. (5), we construct the
algorithm based on a splitting method, using the Wisdom-
Holman strategy of partitioning Hamiltonian in a way that in-
troduces a small parameter as a multiplier of the truncation er-
ror (Wisdom & Holman 1991). There are two small parameters
in our problem: ε1 = O(C − A) and ε2 = O(C − B), both re-
lated to the deviation of the ellipsoid shape from the spherical
symmetry. Their magnitudes depend on the problem at hand,
but b � a implies ε2 � ε1. Thus, the potential V of the ellipsoid
can be considered as the sum of a purely Keplerian part

V0(R) = −k2 me ms

R
, (10)
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and of a perturbation V1 = V − V0(R) = O(ε1).
The Hamiltonian (4) can be split into four separately inte-

grable parts

H = H0 +H1(ε1) +H2(ε2) +H3(ε1), (11)

where

H0 =
P2

2 m
− k2 me ms

R
+

GTG
2 C
, (12)

H1 =

(
1
A
− 1

C

)
G2

1

2
, (13)

H2 =

(
1
B
− 1

C

)
G2

2

2
, (14)

H3 = V(R) +
k2 me ms

R
= V1(R). (15)

Let us introduce the Lie derivatives

Lζ = J
∂H
∂ζ
, L jζ = J

∂H j

∂ζ
, j = 0, . . . , 3,

and associated exponential operators exp[h L], exp[h L j], that
stand for the mapping from the initial conditions ζ0 = ζ(t0) to
ζ1 = ζ(t0 + h). Accordingly, exp[h L] describes the motion in
the full problem (5)

ζ1 = exp[h L] ζ0, (16)

and exp[h L j] defines the motion under the action of theH j part
of the Hamiltonian.

The main building block of the Yoshida-type integrators
(Yoshida 1993) is a second order ,,leapfrog” map Ψh. If H =
H0 +H1(ε), it is defined as

Ψhζ0 = exp

[
h
2

L0

]

◦ exp [h L1] ◦ exp

[
h
2

L0

]

ζ0 �
� exp [h L] ζ0 + O(ε h3). (17)

In our case, with the Hamiltonian (11), the leapfrog map has a
different form Φh; it becomes

Φhζ0 = exp

[
h
2

L0

]

◦ exp

[
h
2

L1

]

◦ exp

[
h
2

L2

]

◦ exp [h L3] ◦

◦ exp

[
h
2

L2

]

◦ exp

[
h
2

L1

]

◦ exp

[
h
2

L0

]

ζ0 �
� exp[h L] ζ0 + O(ε1 h3). (18)

The fourth order integrator (SI4) is obtained as a composition

ζ1 ≈ Φc1h ◦ Φc0h ◦ Φc1h ζ0 + O
(
ε1 h5

)
, (19)

where c0 = 1/(1 − 3√
4 ) and c1 = (1 − c0)/2.

In order to create the Lie-Poisson integrator, we have to find
the explicit form of the maps exp[(h/2) Lj].

3.1. Motion due to H0

H0 describes the relative two-body problem in the reference
frame rotating with a constant angular rate around the axis de-
termined by G. One may easily check that {G,H0} = 0 and G is
a constant vector. Accordingly, we will only discuss the motion
in R and P.

As a matter of fact, we can further splitH0 into

H0 = A + B,
A = P2

2 m
− k2 me ms

R
, (20)

B = G2

2 C
, (21)

and then we observe that {A,B} = 0. The two parts com-
mute and so the motion due to H0 can be represented as pure
Keplerian motion in R, P generated byA

Ṙ = {R,A} = P
m
, (22)

Ṗ = {P,A} = − k2 me ms

R3
R, (23)

followed by the B generated uniform rotation around a fixed
axis

Ṙ = {R,B} = R × G
C
, (24)

Ṗ = {P,B} = P × G
C
. (25)

As it follows, exp[τL0] = Φrot
τ ◦ ΦKep

τ and the sequence of the
two maps is not important.

The Keplerian motion ΦKep
τ can be most easily imple-

mented in terms of the Gaussian functions f (τ) and g(τ)
(Mikkola & Innanen 1999)

R1 = f R0 +
g
m

P0, (26)

P1 = m ḟ R0 + ġ P0. (27)

The rotationΦrot
τ should be performed around the axis spec-

ified by the unit vector Ĝ = G−1G, with the rotation angle
θ = G C−1 τ. This can be achieved by means of the Rodrigues
formula (Marsden & Ratiu 1999)

R1 =M0 R0, P1 =M0 P0, (28)

where

M0 = E + sin θQ(Ĝ) + 2 sin2 (θ/2) Q2(Ĝ). (29)

3.2. Motion due to H1 and H2

The Hamiltonian functionH1 generates the rotation around the
axis OX1 of the body frame

ζ̇ = {ζ,H1} = G1
C − A

A C




R × X1

P × X1

G × X1



, (30)

where X1 = (1, 0, 0)T. Thus, the map exp[τL1] amounts to

R1 =M1(ϕ1)R0, P1 =M1(ϕ1)P0, G1 =M1(ϕ1)G0, (31)
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where M1(ϕ1) is the elementary rotation matrix

M1(ϕ1) =




1 0 0
0 cosϕ1 sin ϕ1

0 − sinϕ1 cosϕ1



, (32)

and the rotation angle is

ϕ1 = G1
C − A

A C
τ. (33)

Similarly to the previous case, H2 generates the rotation
around the axis OX2

ζ̇ = {ζ,H2} = G2
C − B

B C




R × X2

P × X2

G × X2



, (34)

and exp[τL2] is defined as

R1 =M2(ϕ2)R0, P1 =M2(ϕ2)P0, G1 =M2(ϕ2)G0, (35)

where

M2(ϕ2) =




cosϕ2 0 − sinϕ2

0 1 0
sinϕ2 0 cosϕ2



, (36)

with

ϕ2 = G2
C − B

B C
τ. (37)

3.3. Motion due to H3

The perturbing part of the ellipsoid’s potential H3 depends on
the R vector only and it leads to trivial equations

ζ̇ = {ζ,H3} =



0
−∇V1

R × ∇V1



= const, (38)

where ∇V1 =
∂V1
∂R .

In these circumstances we obtain the simple ‘kick map’
exp[τL3]

R1 = R0

P1 = P0 − ∇V1(R0) τ, (39)

G1 = G0 + (R0 × ∇V1(R0)) τ.

According to Bartczak & Breiter (2003), the potential of a
significantly non-spherical ellipsoid can be efficiently approxi-
mated by means of a combination of two material segments:
one of the length 2l1 and mass meµ1, placed symmetrically
along the OX1 axis, and one one with the imaginary length
2l3 = 2iL3 but with a real mass meµ3, placed along the OX3

axis. According to our recent experience, a more accurate and
more convenient model can be obtained if a central point mass
meµ0 is added. Subtracting the Keplerian term from the poten-
tial of two segments and the central mass, one obtains

V1 = µ

[
1 − µ0

R
− µ1

2 l1
ln

(
s1 + 2 l1
s1 − 2 l1

)

− µ3

L3
arctan

(
2L3

s3

)]

, (40)

where µ = k2mems,

s1 =

√

R2 + 2 X1 l1 + l21 +
√

R2 − 2 X1 l1 + l21, (41)

s3 =

√

2
(
R2 − L2

3 + p3

)
, (42)

p3 =

√

(r2 − L2
3)2 + 4X2

3 L2
3. (43)

The gradient of V1 is

∂V1

∂X1
= µ X1




2 µ1

s1 p1
+

2 µ3 s3

p3

(
s2

3 + 4 L2
3

) − 1 − µ0

R3


 , (44)

∂V1

∂X2
= µ X2




2µ1 s1

p1

(
s2

1 − 4 l21
) +

2 µ3 s3

p3

(
s2

3 + 4 L2
3

) − 1 − µ0

R3


 , (45)

∂V1

∂X3
= µ X3




2µ1 s1

p1

(
s2

1 − 4 l21
) +

2 µ3

s3 p3
− 1 − µ0

R3


 , (46)

where

p1 =

√

R2 + 2 X1 l1 + l21

√

R2 − 2 X1 l1 + l21. (47)

The parameters of our potential model can be easily deter-
mined by matching the coefficients of the Legendre series for
V1 with the C0,0, C2,0, C2,2, C4,0, and C4,2 coefficients of the
spherical harmonics expansion of a homogenous ellipsoid. A
more detailed study of this model will be published in a sepa-
rate article; here we only quote the formulas for the parameters

l1 =

√
5

(
a2 + b2 − 2c2

)

7
, (48)

L3 =

√
5

(
a2 + 3b2 − 4c2

)

28
, (49)

µ1 =
21
25

a2 − b2

a2 + b2 − 2c2
, (50)

µ3 =
84
25

b2 − c2

a2 + 3b2 − 4c2
, (51)

µ0 = 1 − µ1 − µ3. (52)

Note that the real segment can be rejected (µ1 = 0) if the body
has a = b, and the imaginary segment becomes negligible for
b = c, when µ3 = 0.

Using the straight segments approximation is by no means
a crucial feature. One may consider using the exact potential of
an ellipsoid in terms of elliptic integrals or the spherical har-
monics series, as long as the former is fast enough or the latter
reasonably convergent.

4. Tangent maps

In many applications the knowledge of a trajectory ζ(t) alone
is not sufficient. The information how small variations of the
initial conditions δ(t) evolve in time is equally useful for the
theoretical stability analysis as well as for practical problem
of adjusting the modeled trajectory to observations. In princi-
ple, infinitesimal variations obey differential equations of mo-
tion and one might think about applying a splitting method to
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solve them. But the equations, albeit linear, are explicitly time-
dependent due to the presence of the fiducial trajectory expres-
sions ζ(t) in their right-hand sides.

A practical solution to the problem of finding δ(t) is based
on the observation that symplectic (or Lie-Poisson) integration
amounts to the iteration of a map Φ, generating a sequence of
values

ζ(t0 + n h) = ζn = Φhζn−1 = Φ
n
hζ0. (53)

If the initial conditions ζ0 are perturbed by δ0, a new sequence
is generated, differing from ζn by the evolving variations δn,
namely

ζn + δn = Φ
n
h(ζ0 + δ0). (54)

The map Φ is usually nonlinear, so we have to approximate
(54) using the linearized Taylor expansion – an approximation
that becomes exact if δ is considered infinitesimal. According
to the chain rule for a differentiation of an n-fold composition
of Φ, we obtain

Φn
h(ζ0 + δ0) = Φn

hζ0 + An An−1 . . .A2 A1δ0, (55)

where A j = (DΦh) j is the Jacobian matrix of Φh evaluated at
ζ = ζ j−1. Substituting (55) into (54), we obtain the evolution of
δn as the product of the Jacobian matrices

δn = Anδn−1 = An . . .A1δ0. (56)

Each matrix product is isomorphic with some linear transfor-
mation – the transformation that we call a tangent map. Thanks
to the linearity of the tangent map, both sides of Equation (56)
can be multiplied by an arbitrary factor. It means that although
formally δ j are considered either infinitesimal or ‘sufficiently
small’, we may adopt any values of δ0 in practical computation
– a definite advantage with respect to the method of a direct
integration of two nearby trajectories, where the roundoff er-
ror unavoidably follows the small displacements. Thus, we will
rather speak about the tangent vector δ instead of ‘variations’.

Let us now examine the expressions of tangent maps as-
sociated with Φh of our four-terms leapfrog. According to the
definition (18), the tangent map matrix A j is a product

A j = W0,2, jW1,2, jW2,2, jW3, jW2,1, jW1,1, jW0,1, j, (57)

where Wi,k, j is the Jacobian matrix of exp[τLi] evaluated with
the values of ζ that serve as the initial condition for the respec-
tive exp[τLi]. The second subscript has been added to indicate
that the functional form of the matrices derived from the same
hamiltonian Hi is similar, but Wi,1, j and Wi,2, j have different
values due to the meanwhile evolution of ζ. In the following
text we will skip the last two subscripts for the sake of brevity.

Another important remark concerns the actual form of tan-
gent maps. Tangent maps are linear transformations and as such
they can always be written as matrix products. But the matrix
form is often too cumbersome and then it is easier to use the
formulas resulting from the direct differentiation of the origi-
nal nonlinear map.

4.1. Tangent map for H0

According to Section 3.1, exp[τL0] = Φrot
τ ◦ ΦKep

τ , hence W0 =

WrotWKep. The tangent map for the Keplerian motion has been
derived by Mikkola & Innanen (1999). Using their formulation
in our case, when

δ =




δR
δP
δG



, (58)

requires a minor modification: all velocities v and their tangent
vectors δv should be replaced by m−1 P and m−1δP respectively.
The tangent vectors of angular momentum δG are constant in
the Keplerian tangent map, because G itself is constant.

Straightforward differentiation of Eq. (29) leads to Wrot –
the tangent map for the rotation around Ĝ

Wrotδ =




δM0 0 0
0 δM0 0
0 0 0



ζ +




M0 0 0
0 M0 0
0 0 E



δ, (59)

where

δM0 = −
(
sin θ

(
E − Ĝ ĜT

)
+ cos θQ(Ĝ)

)
δθ +

+2 sin2 (θ/2)
[
(δĜ) ĜT + Ĝ (δĜ)T

]
− sin θQ(δĜ), (60)

δĜ =
(
δG − δG Ĝ

)
G−1, (61)

δG = (δG)T Ĝ, (62)

δθ = θ (δG) G−1. (63)

In the dyadic notation of the above formulas, B = xxT stands
for the square matrix with the elements Bi j = xix j.

4.2. Tangent maps for H1 and H2

Tangent maps for the elementary rotations can be easily derived
through the differentiation of the respective rotation matrices.
Let

M′
1(ϕ1) =




0 0 0
0 − sinϕ1 cosϕ1

0 − cosϕ1 − sinϕ1



, (64)

and

M′
2(ϕ2) =




− sinϕ2 0 cosϕ2

0 0 0
− cosϕ2 0 − sinϕ2



. (65)

Then, the tangent map due toH1 is

W1δ =
δG1 ϕ1

G1




M′
1 0 0

0 M′
1 0

0 0 M′
1



ζ +




M1 0 0
0 M1 0
0 0 M1



δ, (66)

and similarly

W2δ =
δG2 ϕ2

G2




M′
2 0 0

0 M′
2 0

0 0 M′
2



ζ +




M2 0 0
0 M2 0
0 0 M2



δ. (67)
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4.3. Tangent map for H3

The kick map (39) leads to the tangent map W3

W3δ =




E 0 0
−τVRR E 0

τ [Q(R) VRR −Q(∇V1)] 0 E



δ, (68)

where VRR stands for the Hessian matrix composed of the sec-
ond derivatives of V1.

5. MLCE and MEGNO

Knowing the evolution of the tangent vector δ, we may study
the qualitative properties of motion in the phase space by
evaluating the Maximum Lyapunov Characteristic Exponent
(MLCE) σ. For a continuous orbit ζ(t) that satisfies the dif-
ferential equation ζ̇ = F(ζ), the MLCE is defined as

σ = lim
t→∞

1
t

ln

(
δ(t)
δ(0)

)

= lim
t→∞

1
t

∫ t

0

δ̇(s)
δ(s)

ds, (69)

where δ̇ = δ−1δT(DF)Tδ (Cincotta et al. 2003). For the itera-
tions of a discrete time map ζn = Φ

nζ0, with an associated
tangent map δn = (DΦ)nδ0, the definition of MLCE is

σ = lim
n→∞

1
n

n∑

k=1

ln

(
δk

δk−1

)

. (70)

Roughly speaking, a positive value of MLCE implies a chaotic
motion, which means that ζ(t) and some other orbit ζ′(t) that
were infinitesimally close at t = 0, diverge exponentially at the
rate exp(σt).

Evaluating the MLCE by means of numerical integration,
one has to rely on some finite time estimate σ(t) of σ. The
convergence of σ(t) is often slow and requires the integra-
tion on unreasonably long intervals. The Mean Exponential
Growth factor of Nearby Orbits (MEGNO) function, invented
by Cincotta & Simó (2000), is a good remedy for this difficulty.
For a continuous orbit, the MEGNO function y(t) is defined as

y(t) =
2
t

∫ t

0

δ̇(s)
δ(s)

s ds. (71)

The final conclusions about the nature of the studied orbit
are drawn from the asymptotic behavior of the time-averaged
MEGNO function Y(t)

Y(t) =
1
t

∫ t

0
y(s) ds. (72)

For a discrete map, the MEGNO is computed from
(Cincotta et al. 2003)

y(n) =
2
n

n∑

k=1

k ln

(
δk

δk−1

)

, (73)

and

Y(n) =
1
n

n∑

k=1

y(k). (74)

Similarly to the MLCE case, we use a finite time estimate
Y(t), but the behavior of MEGNO is quite different. Unlike σ,

neither y nor Y have limits for a chaotic orbit. Actually, Y(t)
asymptotically tends to

Y(t) = a t + b,

with a = 0, b = 2 for a quasi-periodic orbit, a = b = 0 for
a stable, isochronous periodic orbit, and a = 1

2σ, b = 0 for
a chaotic orbit. Thus the MEGNO allows an indirect evalua-
tion of MLCE in the chaotic case, but the convergence is much
faster – usually it is enough to follow the interval of 103 times
the basic period of the system (unless a significant stickiness
phenomenon appears).

The information that we obtain from the MEGNO in a non-
chaotic case is more rich than what we get from the MLCE.
From the formal standpoint, Y(t) converges to 2 for all kinds of
quasi-periodic orbits; but the convergence rate is different de-
pending on the local phase space environment and this provides
an additional depth to the finite time estimators Y(t). Quasi-
periodic orbits close to a stable periodic orbit tend to approach
2 from the left: the closer they are to the periodic orbit, the
more slowly their Y(t) approach 2. Similarly, the neighborhood
of an unstable periodic orbits slows down the convergence of
Y(t) to 2 from the right. In these circumstances, the finite time
(or even ‘short time’) estimators reveal the presence of periodic
orbits between the grid points of the studied initial conditions
or parameters.

A fixed step integrator, like the one we present in this paper,
is equivalent to a discrete time map, so we have applied the def-
inition of the MEGNO from Eqs. (73) and (74). The practical
implementation of the algorithm was initially the following:

1. After selecting the parameters and initial conditions ζ0 and
initializing y(0) = Y(0) = 0, the initial tangent vector δ0

is generated with the components being random numbers
from the [−0.5, 0.5] range. The vector is then normalized
in order to have δ0 = 1. This step was later modified as
described below.

2. Each time the n-th step of the integrator is completed and
the tangent vector δn is computed, we update the values of
y and Y according to

y(n) =
n − 1

n
y(n − 1) + 2 ln

(
δn

δn−1

)

, (75)

and

Y(n) =
(n − 1) Y(n − 1) + y(n)

n
. (76)

3. After certain number of integrator steps (depending on the
degree of chaoticity), the current tangent vector is renor-
malized to δn = 1 in order to avoid numerical overflow
problems.

The random choice of δ0 is important, because the conver-
gence rate of Y(n) may significantly depend on the orientation
of the initial tangent vector. If all initial conditions have the
same initial tangent vector, than a double tadpole-shaped arti-
facts with small (even negative) MEGNO values appear, with
the tadpoles’ tails at the unstable equilibrium point and heads
close to the stable equilibrium. According to our experience,
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this feature is generic whenever a libration zone appears on a
phase plot (see Breiter et al. (2005) for a collection of such arti-
facts). The random choice of δ0 usually leads to a slightly more
‘noisy’ plots of the MEGNO, but it removes such artificially
created patterns – at least in principle.

But in the triaxial satellite limit of the Kinoshita problem
we faced the difficulty, that the random choice of δ0 compo-
nents in the (− 1

2 ,
1
2 ) range did not lead to the removal of low

MEGNO artifacts. Observing that d(δG)/dt is much smaller
than d(δR)/dt or d(δP)/dt, we realized, that even the random
choice of δ0 with all components equally treated actually pre-
ferred the direction of the slowest MEGNO growth. The prob-
lem was solved by the following device: at the beginning δ∗0 is
randomly generated with all components in the (− 1

2 ,
1
2 ) range,

then one step of algorithm is performed propagating the values
of δ; finally the lengths of the so obtained δR∗, δP∗, and δG∗
are used as the weighting factors to generate actual δ0 with the
components of δR0 equal to δR∗ times random numbers from
the (− 1

2 ,
1
2 ) interval etc. This device practically removed sys-

tematic patterns of small Y(t).

6. Applications

6.1. The motion of Hyperion

After completing the formal tests of our program based on the
algorithms described in previous sections, we chose the sys-
tem of Saturn and its satellite Hyperion as the first realistic
problem to be investigated. Wisdom et al. (1984) predicted the
chaotic rotation of Hyperion by inspecting the phase space of
the Kinoshita problem in the (me/ms) → 0 limit. Their predic-
tion was confirmed by the analysis of the photometric obser-
vations undertaken by Klavetter (1989a). Wisdom et al. (1984)
studied mainly the planar case (G normal to the orbital plane
and aligned with the axis of the maximum moment of iner-
tia) that is perfectly suited for the analysis by means of the
Poincaré section maps and reducible to an almost paradigmatic
Beletsky equation (Beletsky 1965). But in the same paper, the
authors notice and discuss the attitude instability effect arising
when the planar restriction is suppressed. Due to this effect the
widespread surface of section plot for Hyperion is actually mis-
leading, because some regular regions of this plot prove to be
chaotic in the spatial problem.

In order to study the phase space of Hyperion-like ob-
jects the following set of physical parameters was assumed
(Klavetter 1989b): Hyperion’s semi-axes a = 190 km, b =
0.76316 a, c = 0.6 a, its density ρ = 1400 kg m−3, and Saturn’s
mass ms = 5.685 × 1026 kg. Initial conditions of Saturn in
the Hyperion-fixed frame were derived from the Keplerian ele-
ments

as = 1481.1× 103 km, e = 0.1, ω = M = 0, (77)

and the initial momentum vector components were G1 = G2 =

0, and G3 = C ν. In the definition of Keplerian elements we re-
placed velocities with momenta, which is the best way to han-
dle the problem of two bodies in a rotating frame. We studied
144761 orbits with various values of initial ascending node lon-
gitudesΩ from 0 to 180◦ with 0.◦5 grid, and rotation rates ν from

Table 1. MEGNO map codes and Lyapunov time estimates for
Hyperion.

Code Y TL [days]

A Y ≤ 1.5
B 1.5 < Y ≤ 1.8
C 1.8 < Y ≤ 2.2
D 2.2 < Y ≤ 4
E 4 < Y ≤ 10 TL ≥ 1000
F 10 < Y ≤ 100 100 ≤ TL < 1000
G 100 < Y ≤ 300 33 ≤ TL < 100
H 300 < Y ≤ 500 20 ≤ TL < 33
I Y > 500 TL < 20

0 to 4 n with (n/100) grid, where n = k
√

(ms + mp)/a3
s stands

for the mean motion of Saturn. The former of the variable pa-
rameters was Ω, but due to ω = M = 0, its value determines
the variable ϑ – the angle between the line of apsides and the
longest axis of Hyperion.

For each orbit the MEGNO coefficient was evaluated on the
interval of 103 of orbital periods 2π/n. The computations were
performed twice and the two simulations differed only by the
treatment of the tangent vectors. First, the initial variations δ0

were selected with a planar restriction

δR3 = δP3 = δG1 = δG2 = 0. (78)

We name this case RTM (Restricted Tangent Maps). Then, for
the second run, all components of δ0 were allowed to have
nonzero values. We name this choice ATM (Arbitrary Tangent
Map). Let it be emphasized, that both series contained the same
orbits; the restrictions, distinguishing RTM from ATM, affected
only the tangent vectors. The results are presented in Fig. 1. In
all MEGNO plots the values of Y are classed into 9 bins labeled
from A to I, as explained in Tab. 1.

In Fig. 1a we see the MEGNO map that exactly mimics
the well know Hyperion surface of section pictures that can be
found in papers like Wisdom et al. (1984), Klavetter (1989b),
Black et al. (1995), or Breiter & Buciora (2000), not to men-
tion numerous popular science texts. We recognize a chaotic
sea with the main island of regular motion close to 1:1 spin-
orbit resonance at ϑ = 0◦ and ν ≈ 0.5 n, surrounded by a small
archipelago of a secondary resonance. The small island of 1:2
resonance is visible at ϑ = 90◦ and ν ≈ 0.85 n. Other larger
islands surround the 9:4 resonance (ϑ = 90◦, ν ≈ 2 n) and 2:1
spin-orbit coupling (ϑ = 0◦, ν ≈ 2.35 n). The values of ν/n
should not be confused with the resonant ratios p:q in ques-
tion, because the vertical axes of all plots in this paper refer to
instantaneous, initial values of angular rate that can differ from
the mean angular rate by the current value of the sum of peri-
odic terms. The best analogy at hand is the difference between
the orbital angular rate at pericentre that differs from the mean
motion.

According to Wisdom et al. (1984), the attitude instabil-
ity brings chaos into the 1:1 and 1:2 resonance regions. Our
MEGNO map in Fig. 1b confirms these results. Surprisingly,
the 1:2 island is still visible, but now as a region of extremely
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Fig. 1. MEGNO maps for Hyperion in RTM (a) and ATM models (b).
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Fig. 2. MEGNO for different shapes of Hyperion; RTM (top) and ATM (bottom).

high MEGNO (Y > 1000) with the Lyapunov times shorter
than 10 days. The island has turned into an abyss. We also
do not lose the trace of the 1:1 zone (including the small
archipelago !) – this time as a ‘less chaotic’ region.

The stability of spin-orbit resonances depends on two fac-
tors: orbital eccentricity e and ω0 – a parameter that describes
the departure of the primary’s matrix of inertia from the prolate
spheorid with A = B (Wisdom et al. 1984). For a homogeneous
ellipsoid

ω0 =

√
3 (B − A)

C
=
√

3

√
a2 − b2

a2 + b2
, (79)

and conversely

b
a
=

√
3 − ω2

0

3 + ω2
0

. (80)

Thus, regardless of the shortest semi-axis c, ω0 = 0 when a =
b. Using our values of semi-axes, we obtain for Hyperion ω0 =

0.89.
In order to demonstrate the dependence of resonant rota-

tion states on ω0 within RTM and ATM models, we computed
the MEGNO maps for 401 various rotation rates and 201 ω0

values spanning the range from 0 up to 1.2. The latter value is
the limit obtained with b = c = 0.6 a. Our simulations were
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Fig. 3. MEGNO for different eccentricities of Hyperion orbit; RTM (top) and ATM (bottom)
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Fig. 4. MEGNO maps for a Hyperion-like binary asteroid computed with RTM (a) and ATM (b) models.

performed for two initial values of ϑ equal 0 and 90◦. Thus
the plots of Fig. 2a and 2c should be interpreted as a collection
of the leftmost (or, due to symmetry, the rightmost) columns
of plots similar to Fig. 1, but for different shapes of Hyperion.
Analogously, Fig. 2b and 2d collect the middle columns of the
plots similar to Fig. 1. Combining the information from ϑ = 0◦
and ϑ = 90◦ one may partially reconstruct the basic features
of the whole phase space. The figures can be compared with
Wisdom et al. (1984,Fig. 3).

Figure 2 tells the story of bifurcations and resonance over-
laps. The stable resonance curves are seen as strings of low
MEGNO values. When they enter the chaotic sea, their width
varies reflecting the width of a stable zone that surrounds the

periodic orbit for a given value of ω0. From time to time the
stable zone branches which is the evidence of a periodic orbit
bifurcation. The branches terminate quickly because of the cre-
ated secondary resonances overlap (Lichtenberg & Lieberman
1992). For a given p :q ratio, the resonance curve originates at
ν/n = p/q when ω0 = 0, and extends first horizontally but
then bending up or down as ω0 grows. The robustness of the
9:4 resonance in Fig. 2b and 2d is spectacular: it survives as
long as the 1:2 case – up to ω0 ≈ 1.1. Confronting the planar
case (Fig. 2a,b) with the full problem (Fig. 2c,d), we notice the
effects known from Fig. 1: low ν and 1:2 zones change their
stable nature into an extreme chaos. There are also moderate
chaos (type G) streaks in upper-right regions of Figs. 2c and 2d
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– apparently generated by some non-obvious resonance effect
and definitely deserving future studies.

Figure 3 is constructed and arranged similarly to Fig. 2, but
it shows the dependence of MEGNO at ϑ = 0◦ and ϑ = 90◦ as
a function of orbital eccentricity of Hyperion (more precisely –
of Saturn in our Hyperion-based reference frame). The value
of ω0 was set to 0.89 according to the adopted ellipsoid of
inertia. The maps at the top were computed with RTM; their
counterparts at the bottom were obtained using nonrestricted
tangent vectors. A sample of 201 eccentricity values was used,
ranging from 0 to 0.4, allowing us to see the subsequent de-
struction of stable resonance areas after the chain of bifurca-
tions. The influence of attitude instability is similar to previ-
ous cases. Interestingly, the 1:1 synchronicity becomes chaotic
starting from very low eccentricities, and the 1:2 state is ex-
tremely chaotic even for the circular orbit.

6.2. Hyperion-like binary asteroid

Is the attitude instability phenomenon intrinsically related to
the negligible mass of the triaxial body ? The simplest way to
answer this question is to consider a hypothetic system consist-
ing of Hyperion and a sphere with ms of similar order of mag-
nitude as me. Decreasing the Saturn’s mass we appropriately
shrunk the orbital radius to conserve the the orbital mean mo-
tion. Thus we built a binary asteroid with a Hyperion-like ellip-
soid and a sphere with the Hyperion’s density and the radius of
250 km (i.e. ms/me ≈ 5). The orbital semi-axis as was 800 km.
Maintaining the mean motion, we can use directly the values
of Lyapunov times associated with MEGNO bins in Tab. 1.

Mapping MEGNO as a function of initial ϑ and ν, main-
taining the eccentricity e = 0.1, we obtained the results pre-
sented in Fig. 4 – the analogues of Fig. 1. Recognizing the
characteristic 1:1 and 1:2 zones we notice that the 1:2 spin-
orbit resonance reacts on passing from RTM to ATM similarly
to the real Hyperion case and a similar chaotic wave is seen
at low rotation rates. But, interestingly, the 1:1 synchronicity
is not destabilized completely. Thanks to distinguishing differ-
ent levels of chaoticity, we recognize a pattern resembling a
strongly perturbed Second Fundamental Model of resonance
Henrard & Lemaitre (1983).

6.3. Binary system of 90 Antiope

Thanks to the Keck Adaptive Optics observations
(Merline et al. 2000) and extensive photometric data cov-
ering 5 oppositions (first 4 collected in Michałowski et al.
(2004)), the asteroid 90 Antiope is known to be an interesting
example of a binary system with two comparable components.
According to the recent results of Michałowski et al. (2004),
Antiope is most likely an almost synchronous system with the
rotation period of the primary Te = 16.h5047 ± 0.0002 and the
orbital period of the satellite Ts = 16.h5051 ± 0.0002. These re-
sults were obtained using a kinematic model with a spheroidal
primary having semi-axes a = 42.5 km, b = c = 0.9 a and a
spherical satellite with the radius of 42.5 km. A common den-
sity of the components was assumed as ρ = 1300 kg m−3 and

the circular orbit of the satellite had the radius as = 170 km. In
spite of the successful prediction of the observed lightcurves
by means of the current model, its kinematic origin calls for a
closer look from the dynamical point of view.

Figure 5 presents the dependence of MEGNO on the initial
ϑ and ν for Antiope. The values of MEGNO are coded accord-
ing to Tab. 1, but to account for the difference of orbital periods,
the estimates of Lapunov times from Tab. 1 should be divided
by 30. The results obtained using RTM and ATM do not dif-
fer as significantly as in the previous examples. The 1:1 syn-
chronicity zone is wide and stable in both cases, although the
stochastic separatrix layer is quite thick. Few secondary reso-
nances are also visible at ν/n ≈ 1 and ϑ between 50◦ and 70◦.
Is it justified to claim that in a weakly spheroidal problem with
comparable masses the attitude instability does not play any
significant role ? The answer is negative if we inspect Fig. 6.
It is arranged similarly to Fig. 4: columns refer to the initial
ϑ equal 0 (left) or 90◦ (right), and rows display RTM (top) or
ATM (bottom). The appearance of secondary resonances bi-
furcating from the main 1:1 state is seen as the sequence of
branchings in Fig. 6a. But comparing them with ATM map in
Fig. 6c we see that three of the secondary resonances are atti-
tude unstable – notably the one close to ω0 ≈ 0.37. There is
also the evidence of the high MEGNO wave at small ω0 and
ν/n < 1 that shrinks when the shape changes from a = b to-
wards the b = c spheroid.

All previous examples discussed the planar Kinoshita prob-
lem. The last simulation scanned the whole range of or-
bital inclinations (0.◦5 grid) with respect to the equator of the
spheroidal component, assuming circular orbital motion. The
rotation rates were sampled in the −3 � ν/n � 3 range with
a step of 0.01. This time there was no reason to impose RTM,
hence Fig. 7 consists of two parts only: 7a was obtained with
the initialΩ = 270◦ and argument of latitude M+ω = 90◦, and
7b – with Ω = 0 and M + ω = 90◦. The former leads to ϑ = 0
and the latter to ϑ = 90◦ when the inclination is 0.

The symmetry of both pictures with respect to their cen-
tral points is obvious and it should be expected. The width of
the 1:1 stable librations zone decreases with growing inclina-
tion (Fig. 7a) but at the same time the width of the 1:1 chaotic
zone close to unstable equilibrium becomes smaller (Fig. 7b).
As usually, the 1:2 resonance is the most capricious we can ob-
serve a sudden growth of the associated chaotic zone when in-
clination approaches 90◦. Of course, the same is true for 1:(−2)
and retrograde orbits. Generally, there is a similarity between
(ν/n, i) and (−ν/n, 180◦ − i) pairs. Polar orbits are chaotic for a
slowly rotating primary if the orbital plane is perpendicular to
the longest axis of the ellipsoid. If the orbital plane is aligned
with the longest axis, polar orbits are stable. Interestingly, there
are no vertical structures visible that might be attached to some
critical inclination type phenomena.

7. Conclusions

Combining the MEGNO method with a fast integration algo-
rithm results in a convenient tool for the study of spin-orbit
interactions. The efficiency is gained thanks to few factors: the
Lie-Poisson integrator allows to use a low-order method with
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Fig. 5. MEGNO maps for 90 Antiope in RTM (a) and ATM models (b).
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Fig. 6. MEGNO for different shapes of 90 Antiope; RTM (top) and ATM (bottom).

relatively large stepsize without the immediate penalty of artifi-
cial energy drift and orthogonality loss, and MEGNO indicator
has a faster convergence compared to traditional MLCE com-
putation methods.

Although the applications presented in this paper were se-
lected rather to illustrate the performance of the numerical al-
gorithm, yet they reveal few interesting aspects of the studied
problems. The difference between the values of MEGNO ob-
tained for the same trajectory with restricted and arbitrary tan-
gent maps is both understandable and intriguing. Suppose, that
the trajectory is investigated by means of some Fourier spec-
trum method like the Frequency Analysis (Laskar 1993) or au-
tocorrelation function; the conclusion should be similar to the

RTM – no chaos. But the same trajectory investigated with
Lyapunov exponents related methods without restrictions on
tangent vectors qualifies the motion as chaotic. In our opinion,
the discrepancy of results is due to the important difference be-
tween the chaos detectors based on the study of an orbit alone
(Fourier type) an those referring to the divergence of nearby
orbits (Lyapunov type).

Revisiting the motion of Hyperion we confirmed the results
of Wisdom et al. (1984) concerning location of spin-orbit reso-
nance states. We have also shown how the width of their stable
zones varies depending on the moon’s shape and orbital eccen-
tricity.
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Fig. 7. MEGNO as a function of initial inclination and rotation rate of 90 Antiope.

For binary asteroids with comparable mass of components
we have shown that chaotic tumbling is as common feature
of the phase space as it is in the case of planetary satellites
(Wisdom 1987). Any scenario of the evolution of binary aster-
oids should take this phenomenon into account regardless of
the spin-up or spin-down effects included.

Our results concerning 90 Antiope contribute two impor-
tant features to the current model of the system. First, the width
of the regular libration zone surrounding the 1:1 synchronicity
is too large to agree with the kinematic model of the tiny con-
stant difference between the mean motion and rotation rate. On
the other hand, the fact that no chaos has been observed in the
lightcurve of Antiope may help to put better constraints on the
shape of the primary, because some ratios of the ellipsoid’s axes
should be excluded according to Fig. 6c.
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