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Abstract. The motion of stars in prolate and oblate spheroidal galaxies is studied. Using a combination of Lissajous and
Poincaré transformations, we introduce the set of action-angle-like variables. Then, we perturb the problem of the 1:1:1 reso-
nance motion in a spherical, homogenous galaxy, assuming the perturbing potential in the polynomial Ferrers form. We find the
orbits that are periodic with respect to the radial and vertical oscillations by inspecting the equilibria of a normalized system.
Imposing additional constraints, we find orbits that are periodic in all three coordinates with respect to the system that rotates
with a galaxy.
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1. Introduction

The question of periodic orbits is often raised in generally non-
integrable dynamical problems. Looking for the types of peri-
odic motion in elliptical galaxies, both numerical and analytical
methods are being applied. Classical papers like Contopoulos
(1960) or Ollongren (1962), treat the problem by inspecting
the motion in the rotating cylindrical coordinates co-moving
with a star’s orbit guiding centre. This approach, however, be-
comes problematic if a star approaches the symmetry axis of
the galaxy. More general results obtained by Davoust (1983,
1986), using the Cartesian coordinates in a reference frame ro-
tating with an arbitrary rate, support the Lindstedt method as
the best-suited tool for the perturbative analytical approach in
the hunt for periodic orbits. Averaging techniques, however,
have also been used (cf. Gustavson 1966; de Zeeuw 1985).
Recently, Jalali & Sobouti (1998) proposed the application of
the canonical transformation method that hinges upon the use
of the so-called Lissajous variables invented by Deprit (1991).
The difference between the two methods can be best summa-
rized as the the opposition of the epicyclic formulation in the
Lindstedt case versus the osculating ellipse approach in the
Lissajous variables.

In the present paper we adopt a similar Lissajous-type ap-
proach, although a slightly different set of variables and a dif-
ferent parametrization and partition of the Hamiltonian func-
tion – both presumably more convenient – has been introduced.
The results to be presented are restricted to the spheroidal

galaxies described by the Ferrers potential. Our choice of the
variables requires that both the radial and longitudinal oscilla-
tions are short-period and the difference in their phases evolves
slowly. This assumption implies 1:1 resonance and thus re-
stricts the possible types of periodic orbits. We introduce the
rotation rate of the reference frame as a free parameter that
eventually can be equal to the rotation rate of the galaxy. We
study the equilibria of the normalized Hamiltonian system with
one degree of freedom and establish their stability and bifurca-
tions. This provides a global look at possible types of motion
in the galaxy, but also serves as the key to the search for pe-
riodic orbits. The fact that periodic orbits inherit the stability
properties of the equilibria that generate them is a significant
advantage over the Lindstedt approach.

2. The galactic potential

We consider spheroidal galaxies with a density ρ specified by
the special case of Ferrers’ law of mass distribution (Ferrers
1877; Binney & Tremaine 1987): inside a galaxy it is given by

ρ = ρ0

(
1 − x2 + y2

a2
− z2

c2

)
, (1)
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while outside the galaxy ρ = 0. Equatorial and polar semi-
major axes of the spheroid are a and c, respectively. The gravi-
tational potential at an arbitrary interior point is then given by

V = −π κ ρ0 a2c
2

∫ ∞

0

(
1 − x2+y2

u+a2 − z2

u+c2

)2

(u + a2)
√

u + c2
du, (2)

where u � 0 marks successive equipotential surfaces.
Substituting c = a and performing integration, we can ob-

tain Ferrers’ potential for an inhomogeneous spherical galaxy

Vs = π κ ρ0 r2

(
2
3
− 1

5
r2

a2

)
, (3)

depending only on the radial distance from the center of mass
r =

√
x2 + y2 + z2, the reference density ρ0, and the gravity

constant κ (Davoust 1983). We consider Vs as the sum of the
main quadratic term due to a homogeneous mass distribution

V0 =
2
3
π κ ρ0 r2, (4)

and a quartic perturbation. Thus, the unperturbed potential V0

defines an isotropic, three-dimensional harmonic oscillator
with the fundamental frequency ω0

ω2
0 =

4
3
π κ ρ0. (5)

In an inertial reference frame the unperturbed motion occurs in
the 1:1:1 resonance.

The equatorial semi-axis a will be considered the unit
length. The unit of time is such that ω0 = 1 regardless of the
mass unit. With this choice of units, the value of the gravity
constant is

κ =
3

4 π ρ0
, (6)

in all the expressions of potential.
A dimensionless shape parameter

e = 1 −
( c
a

)2
, (7)

allows substitution c = a
√

1 − e and is valid for both oblate
(0 < e < 1) and prolate (−∞ < e < 0) galaxies. It is different
from the commonly used shape parameters, but – in spite of the
apparent asymmetry – its application renders relatively simple
equations that share the same form regardless of the oblate or
the prolate case.

Using the new units, one can write the Ferrers’ poten-
tial (2) as

V = −3
√

1 − e
8

∫ ∞

0

(
1 − x2+y2

u+1 − z2

u+1−e

)2

(u + 1)
√

u + 1 − e
du

=
r2

2
− 3

20
r4 + O(e). (8)

Performing all products we find the explicit, polynomial form
of V

V = V0 −
(
A1

(
x2 + y2 − 2z2

)
+C1

(
x2 + y2

)
z2 +C2

(
x2 + y2

)2
+ C3 z4

)
, (9)

Table 1. Potential coefficients.

Coefficient e→ −∞ e ≈ 0 e→ 1

A1 − 1
4

1
10 e + O(e2) 1

2

C1 0 3
10 +

6
35 e + O(e2) 3

2

C2
3
16

3
20 − 3

140 e + O(e2) 0

C3 0 3
20 +

27
140 e + O(e2) −∞

where

A1 =
1
2
−

∫ ∞

0

3 (1 − e)
1
2 du

4(1 + u)2 (1 − e + u)
1
2

,

C1 =

∫ ∞

0

3 (1 − e)
1
2 du

4(1 + u)2(1 − e + u)
3
2

, (10)

C2 =

∫ ∞

0

3 (1 − e)
1
2 du

8(1 + u)3 (1 − e + u)
1
2

,

C3 =

∫ ∞

0

3 (1 − e)
1
2 du

8(1 + u) (1 − e + u)
5
2

·

All integrals in (10) are elementary. Moreover, an integration
by parts provides simple relations between the shape dependent
coefficients

A1 =
1
3

e C1,

C2 =
3

16
− 1

8
C1, (11)

C3 =
1
4

(1 − e)−1 − 1
3

C1,

where C1 can be expressed in terms of elementary functions

C1 =
9

4 e2

(
1 − e

3
− √1 − eα(e)

)
, (12)

with

α(e) =

{
e−

1
2 arcsin

√
e for e � 0,

|e|− 1
2 arsinh

√|e| for e � 0,
(13)

or, more conveniently, as a Gaussian hypergeometric function

C1 =
3

10 2F1

(
2, 4 ; 7/2 ; (1− √1 − e )/2

)
. (14)

Table 1 provides asymptotic and approximate values of the co-
efficients.

The perturbing potential is invariant with respect to the ro-
tations around the z axis. Its magnitude depends on two factors:
the galactic oblateness parameter e, and the ratio (r/a)4.

3. Hamiltonian and canonical transformations

In order to study the motion of an object inside a spheroidal
galaxy, we introduce a reference frame rotating with the angu-
lar rate Ω around the symmetry axis of the galaxy.

The Hamiltonian H is composed of two parts: the unper-
turbed H0 describes the motion in a reference galaxy that is
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homogeneous and spherical, considered in the rotating frame,
andH1 is a perturbing potential

H = H0 +H1, (15)

H0 =
1
2

(
X2 + Y2 + Z2 + x2 + y2 + z2

)
−Ω (x Y − y X), (16)

H1 = −A1

(
x2 + y2 − 2z2

)
− C1

(
x2 + y2

)
z2

−C2

(
x2 + y2

)2 −C3 z4. (17)

The Hamiltonian H0 allows a complete reduction to action-
angle variables. We achieve it by means of three subsequent
canonical transformations. The first step is the Lissajous trans-
formation (Deprit 1991) that takes the advantage of the fact
that the system consisting of two unperturbed oscillators in
the x, y plane and rotating around the z axis possesses the vis-
viva integral

L =
1
2

(
X2 + Y2

)
+

1
2

(
x2 + y2

)
, (18)

and the integral of the z component of orbital angular
momentum

G = x Y − y X. (19)

The third integral is related to the vertical oscillations

H =
1
2

(
Z2 + z2

)
, (20)

hence, the second step is a classical Poincaré transformation
for the (z, Z) pair with the action variable H. The two transfor-
mations are defined as

X = −s sin (l + g) − d sin (g − l),

Y = s cos (l + g) + d cos (g − l),

Z =
√

2H cos h, (21)

x = s cos (l + g) − d cos (g − l),

y = s sin (l + g) − d sin (g − l),

z =
√

2H sin h,

where

s =

√
L +G

2
, d =

√
L −G

2
· (22)

The unperturbed HamiltonianH0 expressed in terms of the new
Lissajous-Poincaré variables becomes

H0 = L + H −ΩG. (23)

Noticing the degeneracy of H0 with respect to the frequencies
l̇ = ḣ = 1, we introduce a third transformation

Φ = L, Ψ = L + H, φ = l − h, ψ = h. (24)

Finally, the Cartesian coordinates and momenta become

X = −s sin (φ + ψ + g) + d sin (φ + ψ − g),

Y = s cos (φ + ψ + g) + d cos (φ + ψ − g),

Z =
√

2(Ψ − Φ) cosψ, (25)

x = s cos (φ + ψ + g) − d cos (φ + ψ − g),

y = s sin (φ + ψ + g) + d sin (φ + ψ − g),

z =
√

2(Ψ − Φ) sinψ,

where

s =

√
Φ +G

2
, d =

√
Φ −G

2
· (26)

The Hamiltonian expressed in terms of the new variables ψ, φ,
g, Ψ, Φ, G, is the sum of

H0 = Ψ −ΩG

H1 = M0 + M1 cos 2 φ + M2 cos 2ψ + M3 cos 4ψ

+M4 cos (2ψ + 2φ) + M5 cos (4ψ + 2φ)

+M6 cos (4ψ + 4φ), (27)

where M j are functions of momenta Ψ, Φ, G. Thanks to the
axial symmetry, the angle g is cyclic and thus G is a constant
of motion.

4. Geometrical interpretation of variables

Before we proceed to the normalization of H , let us briefly
discuss the geometrical meaning of the variables introduced in
the previous section. The orbital motion around the center of
a galaxy is decomposed into the equatorial projection (initially
described in terms of l, g, L,G) and the vertical component.

The vertical component amounts to simple harmonic os-
cillations having the amplitude

√
2H (hence H � 0) and the

phase h is measured from the passage through the equatorial
plane z = 0 with Z > 0.

The equatorial projection of an unperturbed orbit in the
fixed frame is an ellipse with the eccentricity depending on
the ratio |G|/L. The angle g determines the short (G > 0) or
the long (G < 0) axis orientation of the ellipse, whereas l, mea-
sured from this axis, serves as a parameter in the parametric
equation of the ellipse – quite similarly to the argument of peri-
center and eccentric anomaly in the Keplerian problem. The
value of G establishes the lower limit of L, due to the condition
|G| � L. If L = |G|, the shape of the equatorial projection is cir-
cular and only the sum or the difference of l and g are properly
defined. Note that in the rotating reference frame, the ellipse
rotates with the angular rate ġ = −Ω. The meaning of G = 0
can be twofold: either the absence of the total angular momen-
tum (vertical orbits passing through the center of galaxy, recog-
nized by L = 0) or the collapse of the equatorial projection to a
straight segment (an elliptic orbit perpendicular to the galactic
equator with L > 0).

The final variables reflect the properties of the Lissajous-
Poincaré set. The value of Φ is bounded by

|G| � Φ � Ψ. (28)
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The special cases are: |G| = Φ for a circular equatorial projec-
tion, Φ = Ψ for the motion taking place in the z = 0 plane (due
to H = 0),Φ = 0 for the straight, vertical oscillations (note that
Φ = 0 necessarily implies G = 0), G = 0 � Φ for elliptic polar
orbits, and finally G = Φ = Ψ = 0 for an object at rest in the
center of the galaxy. The variable φ is the resonant angle of our
problem. If its value is constant, the equatorial projection of the
distance and the z coordinate are synchronized.

To allow a comparison with the traditional epicyclic for-
mulation of motion, we point out few basic facts: in the pla-
nar, equatorial case, the guiding center rotates with an angu-
lar rate equal to the average of l̇ + ġ, i.e. of ψ̇ + φ̇ + ġ; the
equatorial epicyclic frequency is given as the average of 2l̇, i.e.
of 2

(
ψ̇ + φ̇

)
. The vertical epicyclic oscillations are directly de-

scribed in terms of the phase ψ. The distance r is given by

r2 = Ψ − (Ψ −Φ) cos 2ψ −
√
Φ2 −G2 cos 2(ψ + φ), (29)

and its equatorial projection can be obtained if we set Ψ = Φ.
The angular momentum vector

K = r × R = (K1,K2,K3)T, (30)

expressed in the new variables, has components

K1 =
√
Ψ −Φ

(√
Φ −G sin (φ − g)

+
√
Φ +G sin (φ + g)

)
, (31)

K2 =
√
Ψ −Φ

(√
Φ −G cos (φ − g)

−√Φ +G cos (φ + g)
)
, (32)

K3 = G. (33)

The total momentum K is given by

K2 = G2 + 2 (Ψ −Φ)
(
Φ −
√
Φ2 −G2 cos 2 φ

)
. (34)

5. Normalization

The essential gain of our three-step transformation is that now
the Lie derivative operator associated withH0 is simply

L0 =
∂

∂ψ
−Ω ∂

∂g
· (35)

Recalling that g is cyclic, we can drop the second term of
Eq. (35) in most of the applications. In these circumstances
no difficulties are met when we attempt the normalization of
the system. Following the method of Deprit (1969), we de-
fine a canonical transformation such that the Hamiltonian H ,
expressed in terms of some new “mean” variables, becomes a
functionK belonging to the kernel ofL0. If we stop at the first
order of perturbations, the transformation

Ξ = {ψ, φ, g,Ψ,Φ,G} � Ξ∗ = {ψ∗, φ∗, g∗,Ψ∗,Φ∗,G∗}
is defined in terms of the Lie generatorW

W(Ξ) =
M2

2
sin 2ψ +

M3

4
sin 4ψ +

M4

2
sin (2ψ + 2φ)

+
M5

4
sin (4ψ + 2φ) +

M6

4
sin (4ψ + 4φ). (36)

Note thatW does not depend on g and so

G = G∗ + (G∗;W(Ξ∗)) = G∗, (37)

where ( ; ) stands for the Poisson bracket.
The transformed Hamiltonian K(Ξ∗) = K0 + K1 is the

sum of

K0 = Ψ
∗ −ΩG, (38)

K1 = M0 + M1 cos 2 φ∗

= A1 (2Ψ∗ − 3Φ∗) −C1 Φ
∗ (Ψ∗ −Φ∗)

−1
2

C2

(
3(Φ∗)2 −G2

)
− 3

2
C3 (Ψ∗ −Φ∗)2

−1
2

C1 (Ψ∗ − Φ∗)
√

(Φ∗)2 −G2 cos 2 φ∗. (39)

The reduced system defined by K has only one degree of free-
dom and the motion on a “mean orbit” is now governed by
canonical equations

ψ̇∗ = 1 + 2 A1 − 3 C3 (Ψ∗ − Φ∗) −C1 Φ
∗

−C1

2

√
(Φ∗)2 −G2 cos 2 φ∗, (40)

Ψ̇∗ = 0, (41)

ġ∗ = −Ω + C2 G + C1 G
Ψ∗ −Φ∗√
(Φ∗)2 −G2

cos 2 φ∗, (42)

Ġ = 0, (43)

φ̇∗ = −3 A1 −C1 (Ψ∗ − 2Φ∗) + 3 C3 (Ψ∗ −Φ∗)
−3 C2Φ

∗ +
C1

2
2(Φ∗)2 −Ψ∗ Φ∗ −G2√

(Φ∗)2 −G2
cos 2φ∗, (44)

Φ̇∗ = −C1 (Ψ∗ −Φ∗)
√

(Φ∗)2 −G2 sin 2φ∗. (45)

It is worth noting that a new integral of motion has been cre-
ated. It reads K0(Ψ∗,G) = const., or simply Ψ∗ = const.
In practice, the integral is approximate, because we know
the transformation from Ψ∗ to the original Ψ only up to the
first order

Ψ∗ ≈ Ψ − {Ψ,W1(Ξ)} ≈ H(Ξ) − K1(Ξ) + ΩG. (46)

Observe that H(Ξ) is exactly conserved, which brings us to
the statement that K1(Ξ) ≈ const. is an approximate integral.
Is it the usual “third integral” (Contopoulos 1960) of the stel-
lar dynamics? The answer is: not yet, but indeed we recognize
inK1 the first guess for the Whittaker (1944) procedure applied
by Contopoulos & Moutsoulas (1965), or for the Birkhoff pro-
cedure applied by Gustavson (1966). The problem is that K1 is
already a first order quantity with a second order remainder that
is not constant; thus, effectively, K1(Ξ) ≈ const. is a statement
accurate only at the zero order of the perturbation technique,
i.e. merely the first guess.

6. Equilibria in (φ∗,Φ∗) and in other related
variables

Throughout this section only the mean orbits are discussed and
for the sake of brevity we will suppress the asterisks over all
variables. Our first goal is to find all equilibria of the coupled
Eqs. (44) and (45).
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The right hand side of Eq. (45) has sin 2φ as a factor that
vanishes if φc = k π

2 , with k ∈ {0, 1, 2, 3}. In that case, cos 2φ in
Eq. (44) takes the value of 1, if k ∈ {0, 2}, or −1 if k ∈ {1, 3},
leading to the equilibrium conditions for Φ

−3 A1 − (C1 − 3C3)Ψ + (2C1 − 3C2 − 3C3)Φ

±C1

2
2Φ2 − ΨΦ −G2

√
Φ2 −G2

= 0. (47)

The possibility of Φ̇ = 0 due toΦ = Ψ orΦ = |G| should not be
investigated in terms of the polar variables (φ,Φ), because the
Hamiltonian is not analytic there and another set of variables
will be required for a correct study.

Unfortunately, conditions (47) are equivalent to quartic
equations and obtaining their exact solutions is possible, but
quite tedious. In these circumstances, we combine simple con-
siderations of the signs of some quantities with numerical
methods of root finding in the domain

|G| < Φ < Ψ. (48)

We begin with the second derivatives of the HamiltonianK1 at
φc = k π

2 . They are
[
∂2K1

∂φ2

]
φc

= ± 2 C1 (Ψ −Φ)
√
Φ2 −G2, (49)

[
∂2K1

∂Φ2

]
φc

= 2C1 − 3(C2 + C3)

± C1

2
2Φ3 − 3ΦG2 + ΨG2

(
Φ2 −G2

) 3
2

, (50)

[
∂2K1

∂φ ∂Φ

]
φc

= 0, (51)

where, as usual, the upper sign refers to k ∈ {0, 2}. One can
observe that inside the domain (48) the last term of Eq. (50)
is strictly positive, whereas the sum of the remaining terms is
strictly negative

2C1 − 3(C2 + C3) < 0, (52)

C1

2
2Φ3 − 3ΦG2 + ΨG2

(
Φ2 −G2

) 3
2

> 0. (53)

The latter inequality can be easily verified after a substitution
Φ = |G| + ∆1, Ψ = Φ + ∆2 where both ∆1 > 0 and ∆2 > 0 due
to (48). Observing that C1 > 0 and Φ2 −G2 > 0 , we find

2Φ3 − 3ΦG2 + ΨG2 =

2∆3
1 + 6∆2

1|G| + (4∆1 + ∆2) G2 > 0. (54)

The expression

2Φ3 − 3ΦG2 + ΨG2

(
Φ2 −G2) 3

2

is a monotonous, decreasing function of Φ in the domain (48).
This means that if the root Φ of Eq. (50) exists, it is a unique,
simple root.

These properties are very helpful and have significant con-
sequences for the number and stability of critical points.

6.1. Equilibrium E1

Let us consider φc ∈ {π/2, 3π/2}. According to Eqs. (50)
and (53), Eq. (47) has either one or zero roots in the do-
main (48), because in this case the derivative of (47) is strictly
negative. If the root Φ1 exists, we obtain two similar equilib-
ria E1 with the same values ofΦ = Φ1 and φc =

1
2 π or φc =

3
2 π.

For the sake of brevity, we will simply call both points “the E1

equilibrium”, because they share the same properties.
If E1 exists, it is a stable critical point. This conclusion re-

sults from an inspection of the second derivatives (50) that form
the matrix of variational equations

[
δφ̇
δΦ̇

]
=


0

[
∂2K1

∂Φ2

]
E1

−
[
∂2K1

∂φ2

]
E1

0


[
δφ
δΦ

]
. (55)

Both eigenvalues of the Jacobian matrix are purely imaginary,
because[
∂2K1

∂Φ2

]
E1

< 0, and

[
∂2K1

∂φ2

]
E1

< 0.

The condition for the existence of E1 is directly related to the
bifurcations at the Φ = Ψ limit, hence it will be considered in
the next sections.

The orbits of the E1 family have a constant mean inclination
to the galactic equator, because when φ, Φ, and Ψ are constant
the total angular momentum (34) and its z-component (33) are
also constant. Of course, the constant value of the mean in-
clination can be modulated by short-periodic terms when we
come back to the original variables. The orbits cross the equa-
tor at the points of their maximum distance from the origin and
their orbital plane rotates around the galactic polar axis, so the
orbits belong to the z-tube class with a barrel-shaped envelope
(see Fig. 1).

6.2. Equilibria E2 and E3

Let us now pass to the case of φc ∈ {0, π}. According to the
behavior of the second derivative (50), Eq. (47) may have up to
two distinct roots. If the two roots Φ2 < Φ3 exist, they corre-
spond to two equilibria E2 and E3 respectively. As in the pre-
vious section, we use the term “equilibrium E2” for a pair of
points (φc = 0,Φ = Φ2) and (φc = π,Φ = Φ2), with a similar
convention for E3.

The family of orbits at the E2 and E3 equilibria consists
of the trajectories having a constant mean inclination, but – in
contrast to the E1 family – the minimum of r is reached at the
equator. Due to the rotation of the orbital plane, these z-tube
orbits have an hourglass shaped envelope (see Fig. 1).

The stability of E2 and E3 is complementary: due to the
properties of the second derivative ∂2K1

∂Φ2 that increases with Φ,
we have either[
∂2K1

∂Φ2

]
E2

> 0, and

[
∂2K1

∂φ2

]
E2

> 0,

or[
∂2K1

∂Φ2

]
E3

< 0, and

[
∂2K1

∂φ2

]
E3

> 0,
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Fig. 1. Examples of orbits related with equilibria Ek of the normalized system.

in the Jacobian matrix of variational equations analogous
to Eq. (55). As it follows, E2 is a stable equilibrium and E3

is unstable. Both points may merge at a tangent (saddle-center)
bifurcation that occurs for

2C1 − 3(C2 + C3) +
C1

2
2Φ3 − 3ΦG2 + ΨG2

(
Φ2 −G2

) 3
2

= 0. (56)

In that case, the critical point E23, a double root of Eq. (47),
is an unstable cusp of a homoclinic curve on the (φ,Φ)
phase plane.

The bifurcation curve on the G,Ψ parametric plane can be
obtained by solving a system of two simultaneous Eqs. (47)
and (56), the former with a plus sign. The curve is symmetric
with respect to G. It originates as a cusp at

G = 0, Ψ23 =
2A1

2C3 − C1
, (57)

and continues until Φ2 = Φ3 = Ψ – the point of tangency with
the bifurcation curve of E0 described in the following section.

6.3. Equilibrium E0 – equatorial orbits

Asking about orbits in the galactic equatorial plane, we need
the variables (preferably canonical) that provide an analytic

form of K1 when Φ = Ψ. For this purpose we introduce a
canonical coordinate-momentum pair q,Q for the one degree
of freedom system where Ψ and G are considered as parame-
ters. Under the Poincaré transformation

q =
√

2(Ψ −Φ) cos φ, Q =
√

2(Ψ − Φ) sinφ, (58)

we obtain the Hamiltonian

K1 =
q2 + Q2

2
[ 3A1 − (C1 − 3C2)Ψ ]

+

(
q2 + Q2

)2

8
[2C1 − 3C2 − 3C3]

+
C1

8

(
Q2 − q2

) √(
2Ψ − q2 − Q2

)2 − 4G2. (59)

The Hamiltonian is analytic for equatorial orbits, i.e. at q =
Q = 0. From the equations of motion

q̇ =
∂K1

∂Q
, Q̇ = −∂K1

∂q
, (60)

we find that q = Q = 0 is an equilibrium. Thus, equatorial
orbits with Φ = Ψ constitute the equilibrium E0. In the general
case, the E0 orbits are rosettes in the equatorial plane, known
also as loop orbits, like the one presented in Fig. 1.
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The matrix of variational equations

[
δq̇
δQ̇

]
=


0

[
∂2K1

∂Q2

]
E0

−
[
∂2K1

∂q2

]
E0

0


[
δq
δQ

]
. (61)

has two eigenvalues λ1,2 that satisfy

λ2
1,2 = −

[
∂2K1

∂Q2

∂2K1

∂q2

]
E0

= −9A2
1 + 6A1(C1 − 3C2)Ψ

−3
4

(C1 − 6C2)(C1 − 2C2)Ψ2 − C2
1

4
G2. (62)

Depending on the sign of the right-hand side of Eq. (62), equa-
torial orbits are either stable (λ2

1,2 < 0) or unstable (λ2
1,2 > 0).

A pitchfork bifurcation occurs when λ2
1,2 = 0; equating (62) to

zero, we define a quadric curve on the parametric plane (G,Ψ)
that separates the regions of stable and unstable equatorial or-
bits. The quadric is symmetric with respect to the G = 0 line
and it intersects the Ψ axis at

Ψ01 =
6A1

C1 − 6C2
, Ψ02 =

2A1

C1 − 2C2
· (63)

It is tangent to the Ψ = |G| boundary at Ψ3 = 3A1/(C1 − 3C2).
For oblate galaxies with e < 0.8, only Ψ02 is positive and the
Ψ = |G| points are beyond the limits imposed by the condition
that an orbit should not significantly extend outside the galaxy.

As we have signaled in a previous section, the pitchfork
bifurcation at Φ = Ψ is related to the occurrence and disap-
pearance of an equilibrium E1 or E3.

6.4. Circular orbits

“Circular orbits” means the ones with a circular projection onto
the galactic equator (Φ = |G|) – not necessarily the ones with
a constant r. Similarly to the case of equatorial orbits, we can
introduce the Poincaré transformation

p =
√
Φ − |G| cos 2φ, P = −√

Φ − |G| sin 2φ, (64)

with p = P = 0 in the Φ = |G| case. This time, however, the
Hamiltonian

K1 = − p2 + P2

2
[6A1 + 2(C1 − 3C3)Ψ

− (2C1 − 3C2 − 3C3)(p2 + P2 + 2|G|)
]

+
C1

2
p(p2 + P2 + |G| − Ψ)

√
2|G| + p2 + P2, (65)

is analytic at p = P = 0 only for G � 0. Nevertheless, if G � 0,
circular orbits are not critical points of

ṗ =

[
∂K1

∂P

]
0

= 0, Ṗ = −
[
∂K1

∂p

]
0

= C1 (Ψ − |G|)
√
|G|
2
, (66)

except for the circular-equatorial orbits with Ψ = Φ = |G|. The
latter are stable, when the values of Ψ and G imply a stable
circular orbit according to the conditions of the stability of E0.

6.5. Equilibrium E4 – rectilinear polar orbits

The special case of Φ = G = 0 – rectilinear oscillations along
the z axis – requires yet another set of variables

u =
√

2Φ cosφ, U = −√2Φ sinφ. (67)

With G = 0, the HamiltonianK1 takes the form

K1 = −3
8

(
u2 + U2

) (
4A1 − 4ΨC3 + (C2 +C3)

(
u2 + U2

))

−C1

8
(2Ψ − u2 − U2)

(
U3 + 3u2

)
. (68)

Equations of motion have a critical point E4 at u = U = 0 and
the eigenvalues of variational equations are given by

λ2
1,2 = −

3
4

(6A1 + Ψ(C1 − 6C3)) (2A1 + Ψ(C1 − 2C3)) . (69)

As it follows, the rectilinear polar orbits can be either stable or
unstable. The orbits are unstable when

2A1

2C3 −C1
< Ψ <

6A1

6C3 −C1
, (70)

and stable outside this interval. For prolate galaxies the lower
limit becomes negative and all the orbits with

Ψ < 6A1/(6C3 −C1)

are unstable. Referring to the previous results, we can observe
that the lower limit in Eq. (70) is simply Ψ23 from Eq. (57).
From this point of view the stable equilibrium E4 can be con-
sidered as the limit case of E2.

6.6. Summary

Considering the mean variables G and Ψ as parameters, we
can clearly distinguish up to four domains in the (G,Ψ) plane,
according to the existence and stability of various equilibria.
Figure 2 presents the partition of the parametric plane for an
oblate and a prolate galaxy, together with four exemplary phase
space plots in the (φ,Φ) Mercator chart. The latter are restricted
to the − π2 � φ � π

2 range, but thanks to symmetries, the re-
maining parts can be easily recovered by means of a simple
horizontal translation. The areas below the Ψ = |G| lines are
meaningless (see Sect. 4).

Let us briefly review the qualitatively different types of the
phase flow in the mean (φ,Φ) variables. In the domain I of the
parametric plane, only the equilibria E0 and E1 exist and both
are stable. The equatorial (Φ = Ψ) orbits cannot be properly lo-
cated in the Mercator chart, so we simply added a thick, contin-
uous line above the upper edge to mark the existence and stabil-
ity of E0. A similar convention has been applied in other plots;
if the line becomes dashed, the equilibrium E0 is unstable.

One of the boundaries of the region I is the Ψ = |G| line.
The Fig. 2 phase flow plots top and bottom coincide in this
case, i.e. we have equatorial, circular orbits. The equilibria
E1 and E0 merge, resulting in a stable orbit, with one excep-
tion: a pair of G = ±Ψ3 points, where the joint equilibrium
E0-E1-E2-E3 is unstable. This result agrees with the work of
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Fig. 2. Partition of the parametric plane for oblate (top-left, e = 0.4) and prolate (top-right, e = −0.4) galaxies. Phase flow types in domains I–IV
are shown below.

Binney (1981, Eq. (12a)), provided the present potential ex-
pressions are substituted and only his a = 1 is considered.
Crossing the tangent bifurcation line we move from region I
to the region II, with its rich phase portrait containing E0, E1,
E2 and E3 equilibria – only the last one being unstable.

The pitchfork bifurcation line surrounds the domain III,
where only E0, E1 and E2 exist. This is the only part of the
parametric plane with unstable circular orbits.

The first three domains could be met for both the oblate and
the prolate galaxies; the region IV, however, may exist only in
the prolate case. In this domain we have two stable equilib-
ria E0 and E2. Recalling the relation between r, Ψ, and G, we
may conclude that many stars in oblate galaxies should have
orbits of the type I, whereas in prolate galaxies the innermost

orbits should belong to type IV, but further from the center
types I and III become generic.

Figure 2 is incomplete in two aspects. It does not include in-
homogeneous spherical galaxies (with e = 0). But the dynam-
ics in this case is quite simple: there are only two possible types
of the phase flow depending on the value of G being zero or not
(see Fig. 3). The second point that requires a separate comment
is the question of the G = 0 axis that, strictly speaking, does
not belong to any of the four domains in Fig. 2. However, one
can simply obtain the phase flow picture at G = 0 by shifting
the E2 equilibrium down to the bottom edge Φ = G = 0 of
the plots I–IV in Fig. 2, where it turns into E4. Like E2, the E4

equilibrium will remain stable in the regions II, III, and IV. In
region I the equilibrium E2 does not exist and for G = 0 the
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Fig. 3. Phase flow in an inhomogeneous spherical galaxy for G � 0
(top) and G = 0 (bottom). The vertical dashed line consists of the
neutral stability critical points.

polar rectilinear orbits E4 are unstable, but not always! The ex-
ception to this rule is the region of small Ψ for oblate galaxies,
where E4 becomes stable (see Fig. 4).

7. Periodic orbits

7.1. Preliminaries

Each equilibrium of the normalized Hamiltonian K is related
to a family of periodic orbits inside a galaxy. But some fami-
lies may exist only for particular values of the reference frame
angular rate Ω.

In order to discuss the periodic orbits within the framework
of our first order solution, we need to know the short periodic
perturbations in coordinates. They are obtained from the gen-
eratorW defined by Eq. (36), using the definition (25) of rect-
angular variables and evaluating Poisson brackets with respect
to the variables Ξ∗, so that

x(Ξ∗) = x∗ + { x∗,W}, (71)

and similarly for the remaining variables. By x∗ we mean x(Ξ)
as defined in Eq. (25), but with all Ξ actions and angles directly
replaced by the mean variables Ξ∗. Thus we obtain

x = α1 cos (φ∗ + ψ∗ + g∗) − α2 cos (φ∗ + ψ∗ − g∗)
+α3

[
d∗ cos (φ∗ − ψ∗ − g∗) − s∗ cos (φ∗ − ψ∗ + g∗)]

+
α3

2
[

s∗ cos (φ∗ + 3ψ∗ + g∗) − d∗ cos (φ∗ + 3ψ∗ − g∗)]
+α4 s∗ cos (3φ∗ + 3ψ∗ + g∗)
−α4 d∗ cos (3φ∗ + 3ψ∗ − g∗). (72)

e

�

�

�

���

� ���

���

������

Fig. 4. Stability regions of rectilinear polar orbits E4 implied by
Eq. (70) as a function of galactic shape e and mean Ψ. The orbits
are unstable inside the shaded areas.

y = α1 sin (φ∗ + ψ∗ + g∗) + α2 sin (φ∗ + ψ∗ − g∗)
−α3

[
d∗ sin (φ∗ − ψ∗ − g∗) + s∗ sin (φ∗ − ψ∗ + g∗)]

+
α3

2
[

s∗ sin (φ∗ + 3ψ∗ + g∗) + d∗ sin (φ∗ + 3ψ∗ − g∗)]
+α4 s∗ sin (3φ∗ + 3ψ∗ + g∗)
+α4 d∗ sin (3φ∗ + 3ψ∗ − g∗). (73)

z =

√
d∗1
2

[
(2 − 2A1 + 3d∗1C3 + Φ

∗C1) sinψ∗

+
d∗1C3

2
sin 3ψ∗ +

s∗ d∗C1

2
sin (2φ∗ + 3ψ∗)

+s∗ d∗C1 sin (2φ∗ + ψ∗)
]
, (74)

where

s∗ =

√
Φ∗ +G

2
, d∗ =

√
Φ∗ −G

2
, (75)

and

d∗1 = Ψ
∗ −Φ∗.

α1 =
s∗

2
[
2 + A1 + d∗1C1 +C2 (3Φ∗ −G)

]
,

α2 =
d∗

2
[
2 + A1 + d∗1C1 +C2 (3Φ∗ +G)

]
, (76)

α3 =
C1 d∗1

4
,

α4 =
C2 s∗ d∗

2
·

We are also going to use the information about the angular rates

φ̇∗ = −3A1 +C1
(
Φ∗ − d∗1

) − 3C2Φ
∗ + 3C3d∗1

−C1

(
d∗1Φ

∗

4d∗s∗
− d∗s∗

)
cos 2φ∗, (77)

ġ∗ = −Ω +C2G +
C1d∗1G

4d∗s∗
cos 2φ∗, (78)

ψ̇∗ = 1 + 2A1 − C1Φ
∗ − 3d∗1C3 −C1d∗s∗ cos 2φ∗. (79)

We do not provide the expressions for the momenta X, Y, Z, but
they follow a similar pattern as the coordinates x, y, z.
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All equilibria are related to the constant values of Φ∗, G,
and Ψ∗. Only E1, E2 and E3 imply φ∗ = const. in addition. The
stability of each periodic orbit is the same as the stability of
the associated equilibrium, thus it is not necessary to repeat the
results of the previous sections.

7.2. Periodic orbits independent of Ω

There are two kinds of periodic orbits that exist regardless of
the reference frame rotation rate Ω: rectilinear polar orbits and
circular equatorial orbits. Both kinds are invariant with respect
to the Oz rotations.

The equilibrium E4, that exists for Φ = G = 0, and hence
s∗ = d∗ = 0, defines a rectilinear polar orbit with x = y = 0 and

z =

√
Ψ∗

2

[
(2 − 2A1 + 3Ψ∗C3) sinψ∗ +

Ψ∗C3

2
sin 3ψ∗

]
, (80)

where

ψ̇∗ = 1 + 2A1 − 3Ψ∗C3 = const. (81)

The circular equatorial orbits can be seen as the special case
of E0, with Φ∗ = Ψ∗ = |G|. In that case

x = ±√Ψ∗
(
1 +

A1

2
+C2Ψ

∗
)

cos (φ∗ + ψ∗ ± g∗),

y =
√
Ψ∗

(
1 +

A1

2
+C2Ψ

∗
)

sin (φ∗ + ψ∗ ± g∗), (82)

z = 0,

and the frequency is

φ̇∗ + ψ̇∗ ± ġ∗ = 1 ∓Ω − A1 − 2C2Ψ
∗. (83)

In the above expressions, the upper sign refers to the G � 0
case and the lower to G < 0.

7.3. Simple periodic orbits

Inspecting the coordinates expressions (72)–(74) we notice that
once we fix the value of φ∗ at an equilibrium E1, E2, or E3, the
coordinates involve five distinct frequencies νk:

ν1 = ψ̇
∗ + ġ∗, ν2 = ψ̇

∗ − ġ∗, ν3 = 3 ψ̇∗ + ġ∗,
ν4 = 3 ψ̇∗ − ġ∗, ν5 = ψ̇

∗. (84)

The first four appear in x and y, whereas ν5 and its multiples oc-
cur only in the expressions of the z coordinate. Note that ν5 � 0
according to the assumptions of the perturbation theory.

In general, any rational value of ġ∗/ψ̇∗ generates a periodic
orbit because then all νk become rationally dependent on ν5

and the orbit becomes closed. The most important case, that
we will call simple periodic orbits, arises when ġ∗ = 0. The
name is justified by the fact that orbits of this kind have a shape
of symmetrically distorted ellipses (possibly degenerate), and
a short period T = 2π ν−1

5 ≈ 2π. We are going to consider
separately the motion in the fixed (Ω = 0) and in the rotating
(Ω � 0) frames.

7.3.1. Fixed frame (Ω = 0)

Let us begin with an exceptional case of the equatorial or-
bits E0, where we do not assume φ̇∗ = 0. At this equilibrium,
Φ∗ = Ψ∗. Then, d∗1 = 0, z = 0, and coordinates x, y depend
only on the cosine or sine functions of (φ∗ + ψ∗) ± g∗ and
3 (φ∗ + ψ∗) ± g∗. By the assumptions of the perturbation the-
ory,

φ̇∗ + ψ̇∗ = l̇∗ = 1 − A1 − 3Ψ∗C2 � 0. (85)

This means that we have to impose ġ∗ = 0 in order to obtain
the periodic motion, but this is possible only if G = 0. Thus
the equatorial orbits are simple periodic in the fixed frame only
if they degenerate into rectilinear equatorial orbits, or if they
belong to the circular class discussed earlier. The rectilinear
orbits are

x = −
√
Ψ∗

2
r1 sin g∗,

y =

√
Ψ∗

2
r1 cos g∗, (86)

r1 = (2 + A1 + 3C2Ψ
∗) sin l∗ +

C2Ψ
∗

2
sin 3l∗,

and, obviously, z = 0.
Periodic orbits at the E1 equilibrium should have φ∗ = π

2
or φ∗ = 3π

2 , and an appropriate value of Φ∗. According to the
definition φ∗ = l∗−h∗, this implies the following synchronicity:
let re =

√
x2 + y2 stand for the equatorial projection of the

radius vector; then the maximum of re is attained while the
moving body crosses the equatorial plane and the minimum
of re occurs when |z| attains its maximum. For simple periodic
orbits at E1 we have to freeze the motion of the orbital plane
seen in Fig. 1. The condition ġ∗ = 0 reads

G

(
C2 −

C1d∗1
4d∗s∗

)
= 0. (87)

The case of G = 0 refers to the polar orbits, whereas the vanish-
ing term in the bracket defines an inclined orbit. In both cases
the orbits are planar, oval shaped and have two perpendicular
symmetry axes.

Simple periodic orbits associated with E2 and E3 are quite
similar to the E1 case. This time, however, the equatorial and
polar motions are oppositely synchronized: re and |z| attain their
maxima and minima at the same time. The periodicity criterion
differs from (87) only by one sign

G

(
C2 +

C1d∗1
4d∗s∗

)
= 0, (88)

but the consequences are significant. Noticing that all symbols
in the bracket are non-negative, we conclude that only simple
periodic orbits of the polar kind are generated by E2 and E3 in
the fixed reference frame.

7.3.2. Rotating frame (Ω � 0)
For the E0 equatorial orbits, Eq. (85) remains true when
Ω � 0. As before, we can request ġ∗ = 0, but now it means
G = Ω/C2 � 0. In the rotating reference frame, equatorial sim-
ple periodic orbits are no longer rectilinear, but they attain
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a symmetric, oval shape, approaching the circle when |Ω|/C2

tends to Ψ∗.
Similarly, the E1 simple periodic orbits, described in the

previous section, require ġ∗ = 0 with

C2 −
C1d∗1
4d∗s∗

=
Ω

G
, (89)

instead of Eq. (87). This means that periodic orbits of this type
will not be polar.

As far as the periodic orbits related to E2 and E3 are con-
cerned, the usual condition ġ∗ = 0 becomes

C2 +
C1d∗1
4d∗s∗

=
Ω

G
· (90)

So, contrarily to the fixed frame case, the orbits are not polar.
Also, that they exist only if Ω and G have the same signs.

7.4. Other periodic orbits

There is a huge variety of periodic orbits in the discussed po-
tential that are not simple. They attain the form of of closed
planar or spatial rosettes (loops) with periods longer than 2π.

Equatorial orbits E0 may become periodic when the ratio

ġ∗

l̇∗
=

C2 G −Ω
1 − A1 − 3Ψ∗C2

=
n1

n2
, (91)

becomes a rational number with n1, n2 ∈ Z \ {0}. An E1 orbit is
periodic when the ratio

ġ∗

ψ̇∗
=

G
(
C2 − C1d∗1

4d∗ s∗
)
−Ω

1 + 2A1 +C1(d∗s∗ − Φ∗) − 3C3d∗1
, (92)

is a rational number. Rational values of

ġ∗

ψ̇∗
=

G
(
C2 +

C1d∗1
4d∗ s∗

)
−Ω

1 + 2A1 −C1(d∗s∗ + Φ∗) − 3C3d∗1
, (93)

provide periodic E2 and E3 orbits.
The possibilities of obtaining a periodic orbit are so numer-

ous that we will not investigate them in the present paper. One
should note, however, that if the reference frame is fixed or ro-
tates slowly, dense loops should be expected, because then ψ̇∗
is much greater than |ġ∗|.

8. Conclusions

The treatment we have presented is restricted to the periodic or-
bits generated by the 1:1 commensurability between the radial
and longitudinal oscillations, although we have not used the
epicyclic formulation explicitly. Thus, for example, we were
not able to obtain the circular orbits with constant z � 0, nor
the ones with different oscillation ratios. This limitation can
be suppressed (or rather shifted) with a different choice of the
canonical variables.

The normalization of the Hamiltonian was not compli-
cated, but then we had to use four different variable sets in or-
der to account for the geometric singularities associated with
mapping the polar parametrization onto a cylindric surface.
Nevertheless, three of the variable sets were only temporarily
needed; it is a matter of further research to see if a proper family

of manifolds exists that might allow the use of a single variable
set in the averaged problem.

Depending on the values of Ψ∗ and G � 0 there are four
qualitatively different phase portraits of motion. In other words,
we have shown how the existence and stability of equilibria de-
pends on the z component of the angular momentum and on the
mean unperturbed energy. The equilibria led us to the identifi-
cation of periodic orbits in the vicinity of the 1:1 resonance. In
the fixed reference frame, the following simple periodic orbits
were found:
1. rectilinear polar orbits;
2. oval-shaped polar orbits;
3. oval-shaped tilted orbits (equatorially stretched);
4. circular equatorial orbits;
5. rectilinear equatorial orbits.
The longitudinal orientation of all the orbits is arbitrary, but it
can be well expected that when the galaxy becomes slightly
triaxial, only the two preferred directions will remain (x
and y axes) as in the paper by de Zeeuw (1985).

When the reference frame rotates, the basic set of simple
periodic orbits consists of
1. rectilinear polar orbits;
2. oval-shaped and circular equatorial orbits;
3. oval-shaped tilted orbits (equatorially stretched or

shrunken).
We have pointed out a possibility of other types of orbits related
to the commensurability (or simply “the resonance”) between
– roughly speaking – the rotation of the reference frame and
radial/vertical oscillations. But if we attach the physical mean-
ing to the reference frame and request that it rotates with the
galaxy, the rotation rates Ω are slow (Davoust 1986; Martinet
& de Zeeuw 1988). Accordingly, these secondary resonances
will be of quite a high order and of marginal significance for
the dynamics.
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