
Celestial Mech Dyn Astr
DOI 10.1007/s10569-006-5911-5

O R I G I NA L A RT I C L E

Critical inclination in the main problem of a massive
satellite

S. Breiter · A. Elipe

Received: 20 October 2005 / Accepted: 14 December 2005
© Springer Science+Business Media B.V. 2006

Abstract The classical problem of the critical inclination in artificial satellite the-
ory has been extended to the case when a satellite may have an arbitrary, significant
mass and the rotation momentum vector is tilted with respect to the symmetry axis
of the planet. If the planet’s potential is restricted to the second zonal harmonic,
according to the assumptions of the main problem of the satellite theory, two various
phenomena can be observed: a critical inclination that asymptotically tends to the
well known negligible mass limit, and a critical tilt that can be attributed to the effect
of transforming the gravity field harmonics to a different reference frame. Stability of
this particular solution of the two rigid bodies problem is studied analytically using a
simple pendulum approximation.
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1 Introduction

The phenomenon of the critical inclination in artificial satellite theory has been known
since 1950’s. An in-depth overview and an extensive list of related papers can be found
in Coffey et al. (1986, 1994). According to the first order theory, the secular perturba-
tions in the argument of pericentre g vanish if the orbit’s inclination I is the root of

1 − 5 cos2 I = 0. (1)

In the second order approximation, the phenomenon clearly becomes a resonance;
with J2 > 0 and all other harmonics neglected two kinds of frozen orbits appear: stable
ones with g ∈ {90◦, 270◦} and unstable with g ∈ {0◦, 180◦}.
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The critical inclination was discovered and studied under the assumptions that the
satellite’s mass M0 is negligible with respect to the planet’s mass Mp. After a minor
modification of the gravity parameter, the theory remains valid even for a significant
mass of the satellite; this requires, however, that the torques, affecting the spin axes
of both bodies, are neglected. It is not unreasonable to expect that the critical inclina-
tion in artificial satellite theory is a limiting case of some more general phenomenon
occurring in the problem of two rigid bodies. Thus, in the present paper we consider
the extended main problem of the artificial satellite where two restrictions have been
suppressed: a spherical satellite may have an arbitrary mass (even much larger than
the oblate “planet”) and the “planet” may rotate around the axis that is tilted with
respect to its symmetry axis. In order to avoid any suggestions concerning the mass
ratio of the two bodies, we will use the term “central body” or “primary” instead of
the “planet”. Throughout the paper we use the formalism and, to large extent, the
notation adopted from the fundamental paper of Kinoshita (1972).

Using the system of a nonspherical body and a homogenous sphere as a first approx-
imation to the full problem of two rigid bodies is quite common in the binary asteroids
modeling. On can find it in papers by Scheeres (2001, 2004a), Breiter et al. (2005),
and—partially—in (Scheeres 2002, 2004b; Koon et al. 2004).

2 Reference frames and variables

Let us introduce two basic reference frames, both having their origins at the centre
of mass of an axially symmetric central body O: the body frame Oxyz, with the basis
unit vectors x̂, ŷ, ẑ, and the fixed frame OXYZ with the X̂, Ŷ, Ẑ unit vectors. Let ẑ be
directed along the shortest axis of the central body, x̂ towards an arbitrary point on the
equator, and ŷ = ẑ × x̂. The total momentum of the system � (the sum of the central
body angular momentum G1 and of the orbital angular momentum of the sphere G)
is constant, i.e.

� = G1 + G = Ip ω + R × P = const, (2)

where ω is the angular velocity vector of the rotating central body, R and P are the
relative position of the sphere and its canonically conjugate momentum respectively,
and Ip is the matrix of inertia

Ip =
⎛
⎝ A 0 0

0 A 0
0 0 C

⎞
⎠ . (3)

Following Kinoshita (1972) we choose the Ẑ vector of the fixed frame directed along
�, the X̂ vector—orthogonal to Ẑ—directed to some arbitrary fixed point, and Ŷ =
Ẑ × X̂.

Two sets of canonical variables are required in our problem: one for the rotation
of the central body and one for the orbital motion of the sphere with respect to the
central body. The rotation will be described by means of the Serret–Andoyer variables
(Deprit and Elipe 1993) with the momenta
G1—the magnitude of the rotation angular momentum,
L1—the projection of G1 on the polar axis Oz

L1 = G1 · Ẑ = G1 cos J1, (4)
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H1—the projection of G1 on the fixed axis OZ

H1 = G1 · Ẑ = G1 cos I1, (5)

and their conjugate angles g1, �1, h1. The geometrical meaning of the angles can be
easily deduced from the rotations sequence required to transform any position vec-
tor, say R, with the components expressed in the fixed frame, to the body frame; the
resulting vector r will have the components

r = R3(�1) R1(J1) R3(g1)R1(I1) R3(h1) R, (6)

where R1 and R3 are the usual matrices of rotation

R1(α) =
⎛
⎝ 1 0 0

0 cos α sin α

0 −sin α cos α

⎞
⎠ , R3(α) =

⎛
⎝ cos α sin α 0

− sin α cos α 0
0 0 1

⎞
⎠ . (7)

An appropriate figure can be found in Kinoshita (1972, Figs. 1 and 5).
Orbital motion can be described in terms of the Delaunay variables, consisting of

the mean anomaly �, argument of pericentre g, longitude of the ascending node h (all
measured in the fixed frame), and of their conjugate momenta

L = m
√

µ a = m n a2, (8)

G = ||G|| = L η = m n a2
√

1 − e2, (9)

H = G · Ẑ = G cos I, (10)

where

m = Mp M0

Mp + M0
, µ = k2 (Mp + M0), (11)

M0 being the mass of the orbiting sphere, k—the Gaussian gravity constant, a—orbi-
tal major semi-axis, e—orbital eccentricity, and n is the mean motion. Using the true
anomaly f , we can express the position vector R of the sphere as

R = R3(−h) R1(−I) R3(−f − g) (r, 0, 0)T . (12)

Equations (6) and (12) allow to express the position of the sphere with respect to
the body frame r as a function of the Delaunay and Serret–Andoyer variables.

According to the well known properties of the system (Kinoshita 1972), the choice
of Ẑ = �̂ implies important consequences:

1. Orbital plane and the plane normal to G1 intersect along the common line of the
nodes on the invariable plane OXY, and

h1 − h = π . (13)

2. Momenta G1, H1, G, H are not independent, because of

G2 − H2 = G2
1 − H2

1 , H + H1 = α = const. (14)

or, equivalently,

G sin I − G1 sin I1 = 0, G cos I + G1 cos I1 = α = const. (15)

This means that given the value of α, the motion of L, G, L1, G1 and of their conju-
gate angles can be studied separately from H, h, H1, and h1; the number of degrees
of freedom is effectively reduced from 6 to 4.
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3 Hamiltonian and equations of motion

The Hamiltonian function of the system is

H = G2
1 − L2

1

2 A
+ L2

1

2 C
− m3 µ2

2 L2 + J2
m µ a2

p

r3 P2(σ ), (16)

where ap is the equatorial radius of the primary, Pj is the Legendre polynomial of
degree j, and σ = r̂ · ẑ is the sine of latitude of the sphere in the body frame.

The moments of inertia are related to the second zonal harmonic coefficient

C − A = J2Mpa2
p. (17)

Substituting this relation and expanding the Hamiltonian in power series of J2, we
may partition H into

H = H0 + J2 H1 + 1
2 J2

2 H2 + O
(

J3
2

)
, (18)

H0 = G2
1

2 C
− m3 µ2

2 L2 , (19)

H1 = M a2
p (G2

1 − L2
1)

2 C2 + m µa2
p

r3 P2(σ ), (20)

H2 = M2 a4
p (G2

1 − L2
1)

C3 . (21)

The unperturbed Hamiltonian H0 describes the system physically equivalent to the
problem of two spheres: all momenta are integrals of motion and all angles are con-
stant, save for

�̇ = ∂H0

∂L
= m3 µ2

L3 ≡ n, (22)

ġ1 = ∂H0

∂G1
= G1

C
≡ n1. (23)

These two frequencies are present in the definition of the Lie derivative (Deprit 1969)

L0F = (F; H0) = n
∂F
∂l

+ n1
∂F
∂g1

, (24)

where F is any function and (; ) stands for the canonical Poisson bracket.

4 Rigid body potential in the inertial frame

Before we proceed to the perturbation treatment, let us look at the spheroid from
another perspective. The usual treatment of the orbital motion amounts to transform-
ing the position of the sphere from the inertial frame XYZ to the central body frame
xyz. As the alternative, we propose to do the opposite, transforming the central body
potential to the inertial frame XYZ. However, making use of the property (13), we
transform the potential to the nodal reference frame X*Y*z with the axis OX* directed
towards the ascending node of the sphere’s orbit.
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Using theorems about the transformation of Legendre functions under rotation we
obtain

P2(σ ) = C*
2,0P2(σ

*) +
2∑

j=1

P2,j(σ
*)

(
C*

2,j cos jλ* + S*
2,j sin jλ*

)
, (25)

where σ * = R̂ · Ẑ is the sine of latitude with respect to the invariant plane and λ* is the
longitude measured from the orbital ascending node. Introducing symbols sI1 = sin I1,
cI1 = cos I1 and c1 = cos J1, we can express the transformed potential coefficients as

C*
2,0 = P2(cI1)P2(c1) − 1

3
P2,1(cI1)P2,1(c1) cos g1

+ 1
12

P2,2(cI1)P2,2(c1) cos 2g1, (26)

C*
2,1 = −cI1

3
P2,1(c1) sin g1 + sI1

6
P2,2(c1) sin 2g1, (27)

C*
2,2 = − 1

24
P2,2(cI1)P2(c1) − 1

18
P2,1(cI1)P2,1(c1) cos g1

−1 + c2
I1

24
P2,2(c1) cos 2g1, (28)

S*
2,1 = 1

3
P2,1(cI1)P2(c1) − 1 − 2c2

I1

3
P2,1(c1) cos g1

− 1
18

P2,1(cI1)P2,2(c1) cos 2g1, (29)

S*
2,2 = − sI1

6
P2,1(c1) sin g1 − cI1

12
P2,2(c1) sin 2g1. (30)

Thus the second zonal harmonic of the potential in the X*Y*Z frame becomes

V*
2 = m µ a2

p

r3

2∑
j=0

P2,j(σ
*)

(
J2C*

2,j cos jλ* + J2S*
2,j sin jλ*

)
. (31)

Assuming the unperturbed rotation with constant I1, J1 and n1, we can see the rigid
spheroid in the new reference frame as an object continuously changing its shape due
to the time-dependence of C*

2,j and S*
2,j coefficients.

Looking forward to the application of averaging technique, let us ask about an aver-
age potential of the transformed body. Rejecting all terms that are periodic functions
of g1 we obtain

C̄*
2,0 = P2(cI1)P2(c1) = 1

4

(
2 − 3s2

I1

) (
2 − 3s2

1

)
, (32)

C̄*
2,2 = − 1

24
P2,2(cI1)P2(c1) = − s2

I1

8

(
2 − 3s2

1

)
, (33)

S̄*
2,1 = 1

3
P2,1(cI1)P2(c1) = sI1cI1

2

(
2 − 3s2

1

)
, (34)

as the only nonvanishing terms. As it should be expected, if the rotation state is the
shortest axis mode and the angular momentum G1 is normal to the invariant plane
(s1 = sin J1 = 0 and sI1 = 0), we recover the original potential with C*

2,0 = C̄*
2,0 = 1
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and all remaining coefficients equal to zero. But even more noteworthy is the fact that
all the averaged coefficients have a common factor P2(c1). Thus, if

sin J1 =
√

3
2

, (35)

the averaged potential vanishes. In further discussion we will call the critical tilt each
of the two values J1 ≈ 54◦.74 and J1 ≈ 125◦.26, for which the potential of a rotating
spheroid in the nodal frame differs from the point mass potential only by purely
periodic terms in the quadrupole approximation.

5 First order normalization

Using the classical Lie transformation method to normalize the Hamiltonian function
of our problem (Deprit, 1969), we will obtain the first order normalized Hamiltonian
K1 as the sum of these terms of H1 that belong to the kernel of L0 and so do not
depend on the mean variables � and g1, i.e.

L0K1 = 0, (36)

and H1 − K1 is purely periodic. This approach, however, requires two important
assumptions:

1. We exclude all resonance that might occur due to the commensurability of n and
n1.

2. We assume the fast rotation with sufficiently large ratio G1/G, because otherwise
we obtain yet another kind of resonance leading to abnormally large amplitudes
of g1-dependent terms in the generator W1 defined through

L0W1 = H1 − K1. (37)

If none of these restrictions is violated, we obtain the new Hamiltonian K1 as

K1 = 1
2

Mpa2
p n2

1 s2
1 + m µ a2

p

a3

[
C̄*

2,0

〈
a3 P2(σ

*)

r3

〉

+S̄*
2,1

〈
a3 P2,1(σ

*)

r3 sin λ*

〉
+ C̄*

2,2

〈
a3 P2,2(σ

*)

r3 cos 2λ*

〉]
. (38)

The average values in Eq. (38) are obtained by elementary quadratures, taking into
account

〈F(f )〉 = 1
2π

∫ 2π

0

F r2

a2η
df , (39)

and recalling that in the nodal frame⎛
⎝

√
1 − (σ *)2 cos λ*√
1 − (σ *)2 sin λ*

σ *

⎞
⎠ = R1(−I) R3(−f − g)

⎛
⎝ 1

0
0

⎞
⎠ . (40)

So we obtain 〈
a3 P2(σ

*)

r3

〉
= −2 − 3 s2

4 η3 , (41)



Celestial Mech Dyn Astr

well known from the classical satellite theory, and〈
a3 P2,1(σ

*)

r3 sin λ*

〉
= 3 s c

2 η3 , (42)

〈
a3 P2,2(σ

*)

r3 cos 2λ*

〉
= 3 s2

2 η3 , (43)

where s = sin I and c = cos I.
Collecting all results, we have the new Hamiltonian

K = K0 + J2K1 + O
(

J2
2

)
, (44)

K0 = G2
1

2 C
− m3µ2

2 L2 , (45)

K1 = Mp a2
p G2

1 s2
1

C2

+a2
pmµ

4a3η3

(
−C̄*

2,0(2 − 3s2) + 6s
(

S̄*
2,1 c + C̄*

2,2 s
))

. (46)

Introducing the mutual inclination J as an angle between G and G1

J = I1 + I, (47)

we can simplify the final form of K1 that becomes

K1 = M a2
p G2

1 s2
1

C2 − a2
pmµ

2a3η3 P2(c1)P2(cos J). (48)

In the limiting case of the shortest axis rotation and negligible mass M0, when m →
M0, J = I, and J1 = 0, the second term of (48) becomes the classical satellite theory
Hamiltonian (Brouwer 1959). The Hamiltonian K1 depends only on Andoyer and
Delaunay momenta that are prime integrals of the normalized system. It means that
all Andoyer and Delaunay angles are linear functions of time.

6 Critical inclination and critical tilt

The frequency of the mean argument of pericentre in the inertial reference frame can
be obtained from K1

ġ = J2
∂K1

∂G
= J2

3n a2
p

8 a2 (1 − e2)
P2(c1)�(I, J), (49)

where

�(I, J) = 1 + 3 cos 2J + 2c s−1 sin 2J. (50)

There are two possibilities that lead to the situation when ġ = 0. The first one is
P2(c1) = 0; this condition is satisfied at the critical tilt defined in Sect. 4. Its mean-
ing is clearly understandable: secular perturbations in the argument of pericentre
vanish because the potential differs from the Keplerian case only by short-periodic
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terms. Recalling that cos J1 = L1/G1 we observe, that L1 = const not only as a mean
variable, but it is also the prime integral of the original system due to the absence
of �1 in the Hamiltonian H, as a consequence of the axial symmetry of the central
body.

The second condition for ġ = 0—entirely independent on the first one—is obvi-
ously � = 0. As we will see, it generalizes the classical critical inclination condition.
In purely geometrical terms, the critical inclination I is a function of the mutual incli-
nation J (Fig. 1a), or of the obliquity I1 (Fig. 1b). The relation between the obliquity
and mutual inclination is shown in Fig. 1c. The classical limit is recovered when the
obliquity I1 = 0, i.e. when J = I (the dashed line in Fig. 1a). In this case � = 2 (1−5 c2)

and the critical inclination values are I ≈ 63◦.43 and I ≈ 116◦.37.
One should remember, however, that the geometry of I, I1 and J is a function

of momenta G and G1. If we substitute Eq. (15) into the expression of �, the crit-
ical inclination becomes a function of one physical parameter: the ratio G/G1. This
dependence is shown in Fig. 1d.

(a) (b)

(d)(c)

Fig. 1 Critical inclination in the first-order approximation. Plus and minus signs indicate the sign of
secular perturbations in g when P2(c1) > 0
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7 Stability of critical inclination

Within the first order approximation presented in Sect. 6, the critical inclination on
a (g, G) phase plane is a line of critical points G = const. Similarly to the classi-
cal, negligible mass satellite problem, it is only at the second order of perturbation
theory that we start observing isolated critical points with complementary stability
indices, i.e. we pass from the critical inclination phenomenon to the notion of frozen
orbits. But in our present generalization, reaching the second order becomes a real
challenge: it is not feasible in a closed form, the perturbing potential is much more
complicated, and the number of parameters is higher than in the small satellite case.
For these reasons we present very limited results concerning the stability of the frozen
orbits, obtained within a crude approximation. The second order normalization was
performed according to the Lie–Deprit method (Deprit, 1969), with

K2 = 〈H2 + (H1 + K1; W1)〉 , (51)

but all short-periodic terms were a priori rejected before the evaluation of the Poisson
bracket and ultimately we reduced the Hamiltonian

K = K0 + J2K1 + J2
2

2
K2 (52)

to a standard pendulum model

Kp = A
2

Ĝ2 + B cos 2 g, (53)

where

1. A is J2 ∂2K1/∂G2 evaluated at the values of G/G1 and I that satisfy � = 0,
2. B is the coefficient of the cos 2 g term in the 1

2 J2
2 K2, evaluated at the values of

G/G1 and I that satisfy � = 0, and truncated at the second power of the orbital
eccentricity,

3. Ĝ = G − Gcr, where Gcr is the value of orbital momentum that satisfies � = 0.

Even with so strong approximations, the pendulum Hamiltonian Kp contains hundreds
of terms and is too long to be quoted in this paper. However, one should be aware
that some terms of B contain possibly resonant denominators n ± n1, n ± 2 n1, and
2n ± n1. Both n and n1 are positive by definition, hence in the subsequent discussion
the resonances n ≈ n1, n ≈ 2 n1, and 2n ≈ n1 have to excluded.

The approximate Hamiltonian Kp leads to the equations of motion with two pairs
of equilibria: E1 = (g ∈ {0, 180◦}, Ĝ = 0), and E2 = (g ∈ {90◦, 270◦}, Ĝ = 0) with a
complementary stability. The equilibrium E1 is stable (and E2—unstable) if B/A < 0.
It can be easily verified that

sgn A = sgn P2(c1), (54)

hence the stability problem is reduced to the study of the sign of B. On the other
hand, according to Eq. (54) we will have to avoid the values of J1 that are too close to
the critical tilt P2(c1) = 0. The sign of B is determined by two parameters: the ratios
G/G1 and n/n1.

The results are presented in Figs. 2 and 3. Thick dashed lines in these figures indi-
cate the resonances between n and n1 where the present analysis is not valid. Fig.
2 presents the case of an “average oblate” body when P2(c1)> 0. In Figure 2a one
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sees the case with no tilt (J1 = 0). When G/G1 = 0, we recover the classical satellite
case of stable E2 orbits regardless of the n/n1 ratio. But when the orbital momentum
is not negligible, some these orbits may become unstable. However, when the tilt is
significant (Fig. 2b) even the G/G1 = 0 may lead to the occurrence of unstable E2
orbits; the situation is actually equivalent to the problem of critical inclination (or
frozen orbits) around a significantly three-axial oblate body (i.e. one with J2 compa-
rable to the J2,2 coefficient, but both considered small). Figure 3 presents two cases
with P2(c1) < 0, ie. for an “average prolate” body. We have intentionally avoided the
values of J1 close to the critical tilt, where the pendulum approximation breaks down
because of the vanishing A.

As for the critical tilt phenomenon, it is not of the resonance type, because there
are no isolated unstable critical points on the (�1, L1) plane.

(a) (b)

Fig. 2 Stability of frozen orbits when P2(c1) > 0, for two sample values of tilt: J1 = 0 (a) and J1 = 45◦
(b) E2 equilibria are stable inside the grey zones

(a) (b)

Fig. 3 Stability of frozen orbits when P2(c1) < 0, for two sample values of tilt: J1 = 60◦ (a) and
J1 = 90◦ (b) E1 equilibria are stable inside the grey zones
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8 Conclusions

The problem of frozen line of the apsides in the spheroid and sphere case becomes
much more profound than its artificial satellite counterpart if we suppress at least one
of the usual approximations: short axis rotation and negligible mass of the satellite.
Without the short axis rotation assumption, the problem becomes actually equiva-
lent to the motion around a three-axial body (“tesseral resonances” appear) and is
accompanied by the phenomenon of critical tilt. On the other hand, increasing the
satellite’s mass we shift the critical inclination value towards 0 (prograde motion) or
180◦ (retrograde motion). Further studies concerning the stability of frozen orbits
are still required, because the pendulum approximation and O(e2) truncation that
were used in this paper should rather be treated as nothing more than a “quick look”
model. Obviously, introducing more harmonics in the potential of the central body
may change the stability of frozen orbits as it happens in the artificial satellite theory
(Coffey et al. 1994). Nevertheless, the growing number of known binary asteroids
with comparable masses of their components indicates that the problems discussed in
this paper are more than “academic problems”.
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