next up previous contents
Następny: Tempo ewolucji a masa Wyżej: Ewolucja gwiazd Poprzedni: Ewolucja gwiazd

Etapy życia gwiazdy

Typowy przebieg ewolucji gwiazd:
  1. Kontrakcja gazu w obłoku molekularnym
    Mamy duży (masa od kilkuset tysięcy do miliona mas Słońca), chłodny (temp. rzędu 10 K) i gęsty obłok molekularny, zawierający głównie wodór cząsteczkowy ${\rm H}_{2}$ z niewielką domieszką bardziej złożonych molekuł i pyłu.

    W obłoku, na skutek np. nadejścia fali uderzeniowej, wywołanej wybuchem pobliskiej supernowej, pojawiają się samograwitujące zagęszczenia o masie rzędu $10$ do $100\: \mathfrak{M}_{\odot}$.

  2. Protogwiazda
    W czasie zapadania energia grawitacyjna zamienia się w ciepło, ogrzewając centrum obłoku. Gaz nagrzewa się do 2 do 3 tys. K, mógłby już świecić na czerwono, ale otaczający go kokon gazowo-pyłowy pochłania promieniowanie i wysyła je dalej w podczerwieni i w zakresie mikrofalowym.
  3. Gwiazda typu T Tauri
    Gwiazda staje się widoczna z zewnątrz. Silny wiatr gwiazdowy wyrzuca część masy rodzącej się gwiazdy, rozwiewając jednocześnie gazowo-pyłowy kokon. We wnętrzu rozpoczynają się reakcje zamiany wodoru w hel.

  4. Gwiazda ciągu głównego
    Gwiazda trafia na ciąg główny w miejscu zdeterminowanym jej masą. Pojawia się równowaga hydrostatyczna. W jądrze pali się wodór. Ten etap zajmuje ok. 90% życia gwiazdy.

  5. Nadolbrzym, olbrzym lub podolbrzym (w zależności od masy)
    W jądrze cały wodór zamienił się w hel, brakuje źródła energii, ciśnienie promieniowania maleje. Zachwiana równowaga hydrostatyczna. Jądro się kurczy, jego temperatura rośnie zapalając wodór w otoczce, wzrasta wydzielanie energii powodując rozdęcie zewnętrznych warstw gwiazdy. Gwiazda jest znacznie jaśniejsza, niż gdy paliła wodór w jądrze. Powiększanie powierzchni przy stałym tempie prod. energii w otoczce prowadzi do spadku mocy na jednostkę powierzchni. Zgodnie z prawem Stefana-Boltzmana spada temperatura otoczki i gwiazda świeci na czerwono. Jako olbrzym gwiazda może wyrzucać spore ilości gazu w postaci ,,wiatru''.


    W kurczącym się jądrze rośnie temperatura tworząc warunki do rozpoczęcia syntezy cięższych pierwiastków. Im większa masa tym więcej razy zachodzi cały proces, powtarzany dla coraz większych liczb atomowych: hel zamienia się w węgiel, węgiel w tlen, tlen w krzem, krzem w żelazo, przy czym na każdym etapie powstają także inne pierwiastki. Na żelazie cykl się kończy. Gwiazda przypomina cebulę, składając się z koncentrycznych powłok, zawierających kolejno (w przypadku najmasywniejszych gwiazd, i tylko w uproszczeniu) wodór, hel, węgiel, tlen, krzem i żelazne jądro.

  6. Mgławica planetarna
    W gwiazdach o małych masach (od $0.1$ do ok. $5\:
\mathfrak{M}_{\odot}$) zewnętrzne warstwy zostają odrzucone, tworząc tzw. mgławicę planetarną, jądro (o masie mniejszej od ok. 1.4 masy Słońca) kurczy się do postaci białego karła. Biały karzeł to gwiazda o rozmiarach Ziemi, ogromnej gęstości (1 łyżeczka tej materii ma masę kilku ton) i temperaturze powierzchniowej kilkudziesięciu tys. K. Przykładem jest Syriusz B, trudno dostrzegałny towarzysz Syriusza A, najjaśniejszej gwiazdy nieba. Biały karzeł zbudowany jest ze zdegenerowanego gazu elektronowego i świeci kosztem nagromadzonego ciepła. Po wystygnięciu staje się niewidocznym brązowym karłem.

  7. Supernowa
    Gwiazdy o masach powyżej $5\:
\mathfrak{M}_{\odot}$ wybuchają jako supernowe. Obiekt taki w czasie wybuchu jasnością dorównuje całej galaktyce! Jądro takiej gwiazdy, po ustaniu reakcji termojądrowych, zapada się tworząc gwiazdę neutronową o skrajnej gęstości (1 łyżeczka tej materii ma masę kilku milionów ton) i średnicy rzędu 10 km. Opadająca na nią gwałtownie otoczka rozgrzewa się, zapalają się zawarte w niej pierwiastki (np. tlen, węgiel, hel, wodór), w czasie krótszym niż 1 sekunda wydziela się ogromna ilość energii. Otoczka uderza w powierzchnię gwiazdy neutronowej, powstaje fala uderzeniowa, rozchodząca się na zewnątrz i odrzucająca otoczkę. Tworzy się mgławica -- przykładem jest mgławica Krab, pozostałość po wybuchu supernowej w 1054 roku. Pozostałością wybuchu najmasywniejszych gwiazd (o masach od ok. $10\: \mathfrak{M}_{\odot}$) są czarne dziury.


next up previous contents
Następny: Tempo ewolucji a masa Wyżej: Ewolucja gwiazd Poprzedni: Ewolucja gwiazd
Tomasz Kwiatkowski
2000-06-09